Canal学习文档

本文是Canal学习文档,介绍了Canal日志及配置位置、部署问题及解决方法,如异步读取batchId重复消费、类型转换错误等。还提及客户端集群部署方式,以及Canal集成Kafka的服务端和客户端配置,包括配置文件和获取消息的方式等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Canal学习文档


测试环境demo搭建

堡垒机地址:

测试部署地址:10.201.21.206

git工程地址:



```

重启

3.登录mysql查看是否开启bin-log日志

```
show variables like 'log_bin';
show variables like '%binlog_format%';
```



4、数据库用户需要配置的权限

用户需要拥有 SUPER  或 REPLICATION CLIENT 权限

查看权限命令

```sql
-- 查看当前用户权限
show GRANTS;
-- 查看其他用户权限 
SHOW GRANTS FOR 'username'@'%';
-- 查看数据库binlog日志状态
show variables like 'log_bin';

-- 查看binlog日志类型
show variables like '%binlog_format%';
```

二、linux搭建canal服务

1、登录linux服务器

2、创建canal启动脚本

```shell
vim /docker/canal/start-canal-server.sh
 
# 内容 容器名字 端口映射
docker run -d --name canal-server-prod -p 11111:11111 canal/canal-server:v1.1.4
```

3、执行脚本安装、启动canal

```shell
chmod 755 /docker/canal/start-canal-server-prod.sh
sh /docker/canal/start-canal-server-prod.sh
```

4、进入容器修改配置

```shell
docker exec -it canal-server-prod /bin/bash
```

5、编辑配置

```shell
vi canal-server/conf/example/instance.properties

# 几个重要的配置
# 数据库ip:端口
canal.instance.master.address=

# 数据库用户名密码
canal.instance.dbUsername=
canal.instance.dbPassword=

# 数据库监控过滤器
# 1. 所有表:.* or .*\\..*
# 2. canal schema下所有表: canal\\..*
# 3. canal下的以canal打头的表:canal\\.canal.*
# 4. canal schema下的一张表:canal\\.test1
# 5. 多个规则组合使用:canal\\..*,mysql.test1,mysql.test2 (逗号分隔)


![外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传](https://img-home.csdnimg.cn/images/20230724024159.png?origin_url=C%3A%5CUsers%5Cwufc01%5CAppData%5CRoaming%5CTypora%5Ctypora-user-images%5Cimage-20230607113632663.png&pos_id=img-HOORYbQN-1694400685327)



6、重启容器

\#按ctrl+D退出容器,并重启容器

```shell
docker restart canal-server-pre
```

7、进入容器查看日志

```
docker exec -it canal-server-pre /bin/bash
tail -100f canal-server/logs/example/example.log
```

8、再次查看日志,显示连接成功,正在同步

Canal日志以及配置位置:

1.canal部署位置:

在这里插入图片描述

2. 各个环境容器

请添加图片描述

3.canal容器常用命令

请添加图片描述

3.canal客户端源码(客户端配置流程)

  1. 进入canal客户端配置注入类

请添加图片描述

  1. 注入完配置后对client进行构建

请添加图片描述

  1. 构建完后运行

请添加图片描述

自动装配过滤器示例:

请添加图片描述

  1. 接受到消息后进行处理

请添加图片描述

  1. 过滤出要监听的表后将数据转交至数据处理器

请添加图片描述

  1. 构建数据对象(对应表的对象)

    请添加图片描述

这里出现过因为用错类复制方法导致出现“”报错的问题,后面修改为了toBean

请添加图片描述

具体的细节忘了,把注释解开因该能遇到相同问题

  1. 进入到对应表监控处理器,类似xxljob的handler

    请添加图片描述

Canal部署问题:

1.异步读取batchId重复消费 not firstly

串行读取

使用消息队列分发

2.读取数据库数据转化成实体的时候产生类型抓换错误“”不能转string

使用toBean,Inteager.parseInt()会导致字符串为""时报错

3.batch not exist

将scan = false

设置客户端重试机制

4.handler中如果有DS会使得handler不被注册进canal

5.表结构变更可能会影响同步阻塞

解决方法:删除conf/example/目录下的h2跟meta相关文件,重启canal,期间数据会丢失需要重新插入期间数据)

Canal客户端集群部署

通过mq进行多客户端订阅

Canal集成kafka

canal服务端kafka相关配置

canal.properties

# tcp, kafka, RocketMQ
canal.serverMode = kafka
##################################################
######### 		     MQ 		     #############
##################################################
canal.mq.servers = 10.201.21.206:9092,10.201.21.207:9092,10.201.21.205:9092
canal.mq.retries = 0
# flagMessage模式下可以调大该值, 但不要超过MQ消息体大小上限
canal.mq.batchSize = 16384
canal.mq.maxRequestSize = 1048576
# flatMessage模式下请将该值改大, 建议50-200
canal.mq.lingerMs = 100
canal.mq.bufferMemory = 33554432
# Canal的batch size, 默认50K, 由于kafka最大消息体限制请勿超过1M(900K以下)
canal.mq.canalBatchSize = 100
# Canal get数据的超时时间, 单位: 毫秒, 空为不限超时
canal.mq.canalGetTimeout = 100
# 是否为flat json格式对象
canal.mq.flatMessage = false
# kafka消息投递是否使用事务
canal.mq.transaction = false
canal.mq.compressionType = none
canal.mq.acks = all
#canal.mq.properties. =
canal.mq.producerGroup = test
# Set this value to "cloud", if you want open message trace feature in aliyun.
canal.mq.accessChannel = local
# aliyun mq namespace
#canal.mq.namespace =

##################################################
#########     Kafka Kerberos Info    #############
##################################################
canal.mq.kafka.kerberos.enable = false
canal.mq.kafka.kerberos.krb5FilePath = "../conf/kerberos/krb5.conf"
canal.mq.kafka.kerberos.jaasFilePath = "../conf/kerberos/jaas.conf"

instance.properties

# table regex 过滤表 监听amp_bis_db所有表。。。
canal.instance.filter.regex=amp_bis_db\\..*,amp_lease_process\\..*
# table black regex
canal.instance.filter.black.regex=
canal.instance.filter.query.dml = true
canal.instance.parser.parallelThreadSize=16
# table field filter(format: schema1.tableName1:field1/field2,schema2.tableName2:field1/field2)
#canal.instance.filter.field=test1.t_product:id/subject/keywords,test2.t_company:id/name/contact/ch
# table field black filter(format: schema1.tableName1:field1/field2,schema2.tableName2:field1/field2)
#canal.instance.filter.black.field=test1.t_product:subject/product_image,test2.t_company:id/name/contact/ch

# mq config
# kafka topic配置
canal.mq.topic=canal-prod
# dynamic topic route by schema or table regex
#canal.mq.dynamicTopic=mytest1.user,mytest2\\..*,.*\\..*  可以配置动态topic
canal.mq.partition=0
# hash partition config
canal.mq.partitionsNum=3
#canal.mq.partitionHash=test.table:id^name,.*\\..*

canal+kafka客户端

pom

ps:客户端需要单独引入kafka配置不然会报错

<dependency>
			<groupId>org.apache.kafka</groupId>
			<artifactId>kafka-clients</artifactId>
			<version>1.1.1</version>
			<scope>provided</scope>
		</dependency>

获取消息的方式:

1.使用List新建下列连接对象时需要设置flatMessage为true

2.使用List 新建下列连接对象时需要设置flatMessage为false

public KafkaCanalClient build() {
            KafkaCanalConnector connector = new KafkaCanalConnector(servers, topic, partition, groupId, batchSize, false); // 最后一项为flatMessage(boolean)
            KafkaCanalClient kafkaCanalClient = new KafkaCanalClient();
            kafkaCanalClient.setMessageHandler(messageHandler);
            kafkaCanalClient.setConnector(connector);
            kafkaCanalClient.filter = this.filter;
            kafkaCanalClient.unit = this.unit;
            kafkaCanalClient.batchSize = this.batchSize;
            kafkaCanalClient.timeout = this.timeout;
            return kafkaCanalClient;
        } // 以上值需要在yml文件里进行配置

report工程

yml配置:

canal:
  server: 10.201.21.206:9092,10.201.21.207:9092,10.201.21.205:9092
  destination: canal-prod // kafka对应topic
  user-name: canal
  password: canal
  async: true
  group-id: canal-report
  mode: kafka // canal模式

Canal生产环境配置:

配置文件

恢复默认配置(表结构变更可能会影响同步阻塞–解决方法:删除conf/example/目录下的h2跟meta相关文件,重启canal,期间数据会丢失需要重新插入期间数据)

instance.properties:

ql serverId , v1.0.26+ will autoGen
canal.instance.mysql.slaveId=22

# enable gtid use true/false
canal.instance.gtidon=false

# position info
canal.instance.master.address=localhost:3306
canal.instance.master.journal.name=
canal.instance.master.position=
canal.instance.master.timestamp=
canal.instance.master.gtid=

# rds oss binlog
canal.instance.rds.accesskey=
canal.instance.rds.secretkey=
canal.instance.rds.instanceId=

# table meta tsdb info
canal.instance.tsdb.enable=true
#canal.instance.tsdb.url=jdbc:mysql://127.0.0.1:3306/canal_tsdb
#canal.instance.tsdb.dbUsername=canal
#canal.instance.tsdb.dbPassword=ha%n4sTdC4zNspxg

#canal.instance.standby.address =
#canal.instance.standby.journal.name =
#canal.instance.standby.position =
#canal.instance.standby.timestamp =
#canal.instance.standby.gtid=

# username/password
canal.instance.dbUsername=canal
canal.instance.dbPassword=SS\#c4$gdf*s
canal.instance.connectionCharset = UTF-8
# enable druid Decrypt database password
canal.instance.enableDruid=false
#canal.instance.pwdPublicKey=MFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBALK4BUxdDltRRE5/zXpVEVPUgunvscYFtEip3pmLlhrWpacX7y7GCMo2/JM6LeHmiiNdH1FWgGCpUfircSwlWKUCAwEAAQ==

# table regex
canal.instance.filter.regex=amp_bis_db\\..*,amp_lease_process\\..*
# table black regex
canal.instance.filter.black.regex=
canal.instance.filter.query.dml = true
canal.instance.parser.parallelThreadSize=16
# table field filter(format: schema1.tableName1:field1/field2,schema2.tableName2:field1/field2)
#canal.instance.filter.field=test1.t_product:id/subject/keywords,test2.t_company:id/name/contact/ch
# table field black filter(format: schema1.tableName1:field1/field2,schema2.tableName2:field1/field2)
#canal.instance.filter.black.field=test1.t_product:subject/product_image,test2.t_company:id/name/contact/ch

# mq config
canal.mq.topic=canal-prod
# dynamic topic route by schema or table regex
#canal.mq.dynamicTopic=mytest1.user,mytest2\\..*,.*\\..*
canal.mq.partition=0
# hash partition config
canal.mq.partitionsNum=3
#canal.mq.partitionHash=test.table:id^name,.*\\..*
#################################################

canal.properties:

#################################################
######### 		common argument		#############
#################################################
# tcp bind ip
canal.ip =
# register ip to zookeeper
canal.register.ip =
canal.port = 11111
canal.metrics.pull.port = 11112
# canal instance user/passwd
# canal.user = canal
# canal.passwd = E3619321C1A937C46A0D8BD1DAC39F93B27D4458

# canal admin config
#canal.admin.manager = 127.0.0.1:8089
canal.admin.port = 11110
canal.admin.user = admin
canal.admin.passwd = 4ACFE3202A5FF5CF467898FC58AAB1D615029441

canal.zkServers =
# flush data to zk
canal.zookeeper.flush.period = 1000
canal.withoutNetty = false
# tcp, kafka, RocketMQ
canal.serverMode = kafka
# flush meta cursor/parse position to file
canal.file.data.dir = ${canal.conf.dir}
canal.file.flush.period = 1000
## memory store RingBuffer size, should be Math.pow(2,n)
canal.instance.memory.buffer.size = 16384
## memory store RingBuffer used memory unit size , default 1kb
canal.instance.memory.buffer.memunit = 1024 
## meory store gets mode used MEMSIZE or ITEMSIZE
canal.instance.memory.batch.mode = MEMSIZE
canal.instance.memory.rawEntry = true

## detecing config
canal.instance.detecting.enable = false
#canal.instance.detecting.sql = insert into retl.xdual values(1,now()) on duplicate key update x=now()
canal.instance.detecting.sql = select 1
canal.instance.detecting.interval.time = 3
canal.instance.detecting.retry.threshold = 3
canal.instance.detecting.heartbeatHaEnable = false

# support maximum transaction size, more than the size of the transaction will be cut into multiple transactions delivery
canal.instance.transaction.size =  1024
# mysql fallback connected to new master should fallback times
canal.instance.fallbackIntervalInSeconds = 60

# network config
canal.instance.network.receiveBufferSize = 16384
canal.instance.network.sendBufferSize = 16384
canal.instance.network.soTimeout = 30

# binlog filter config
canal.instance.filter.druid.ddl = true
canal.instance.filter.query.dcl = false
canal.instance.filter.query.dml = false
canal.instance.filter.query.ddl = false
canal.instance.filter.table.error = false
canal.instance.filter.rows = false
canal.instance.filter.transaction.entry = false

# binlog format/image check
canal.instance.binlog.format = ROW,STATEMENT,MIXED 
canal.instance.binlog.image = FULL,MINIMAL,NOBLOB

# binlog ddl isolation
canal.instance.get.ddl.isolation = false

# parallel parser config
canal.instance.parser.parallel = true
## concurrent thread number, default 60% available processors, suggest not to exceed Runtime.getRuntime().availableProcessors()
#canal.instance.parser.parallelThreadSize = 16
## disruptor ringbuffer size, must be power of 2
canal.instance.parser.parallelBufferSize = 256

# table meta tsdb info
canal.instance.tsdb.enable = true
canal.instance.tsdb.dir = ${canal.file.data.dir:../conf}/${canal.instance.destination:}
canal.instance.tsdb.url = jdbc:h2:${canal.instance.tsdb.dir}/h2;CACHE_SIZE=1000;MODE=MYSQL;
canal.instance.tsdb.dbUsername = canal
canal.instance.tsdb.dbPassword = canal
# dump snapshot interval, default 24 hour
canal.instance.tsdb.snapshot.interval = 24
# purge snapshot expire , default 360 hour(15 days)
canal.instance.tsdb.snapshot.expire = 360

# aliyun ak/sk , support rds/mq
canal.aliyun.accessKey =
canal.aliyun.secretKey =

#################################################
######### 		destinations		#############
#################################################
canal.destinations = canal-prod
# conf root dir
canal.conf.dir = ../conf
# auto scan instance dir add/remove and start/stop instance
canal.auto.scan = true
canal.auto.scan.interval = 5

canal.instance.tsdb.spring.xml = classpath:spring/tsdb/h2-tsdb.xml
#canal.instance.tsdb.spring.xml = classpath:spring/tsdb/mysql-tsdb.xml

canal.instance.global.mode = spring
canal.instance.global.lazy = false
canal.instance.global.manager.address = ${canal.admin.manager}
#canal.instance.global.spring.xml = classpath:spring/memory-instance.xml
canal.instance.global.spring.xml = classpath:spring/file-instance.xml
#canal.instance.global.spring.xml = classpath:spring/default-instance.xml

##################################################
######### 		     MQ 		     #############
##################################################
canal.mq.servers = 10.201.17.76:9092,10.201.17.75:9092,10.201.17.74:9092  
canal.mq.retries = 0
canal.mq.batchSize = 16384
canal.mq.maxRequestSize = 1048576
canal.mq.lingerMs = 100
canal.mq.bufferMemory = 33554432
canal.mq.canalBatchSize = 100
canal.mq.canalGetTimeout = 100
canal.mq.flatMessage = false
canal.mq.compressionType = none
canal.mq.acks = all
#canal.mq.properties. =
#canal.mq.producerGroup = test
# Set this value to "cloud", if you want open message trace feature in aliyun.
canal.mq.accessChannel = local
# aliyun mq namespace
#canal.mq.namespace =

##################################################
#########     Kafka Kerberos Info    #############
##################################################
canal.mq.kafka.kerberos.enable = false
canal.mq.kafka.kerberos.krb5FilePath = "../conf/kerberos/krb5.conf"
canal.mq.kafka.kerberos.jaasFilePath = "../conf/kerberos/jaas.conf"
#canal.mq.producerGroup = test
# Set this value to "cloud", if you want open message trace feature in aliyun.
canal.mq.accessChannel = local
# aliyun mq namespace
#canal.mq.namespace =

##################################################
#########     Kafka Kerberos Info    #############
##################################################
canal.mq.kafka.kerberos.enable = false
canal.mq.kafka.kerberos.krb5FilePath = "../conf/kerberos/krb5.conf"
canal.mq.kafka.kerberos.jaasFilePath = "../conf/kerberos/jaas.conf"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值