
课堂作业
课堂作业
SimpleZihao
听君一席话,如听一席话
展开
-
随机梯度下降算法
概述随机梯度下降,和批量梯度下降原理类似,区别在于求梯度时没有用所有样本的数据,而是仅仅选取一个样本j来求梯度,更新公式为:随机梯度下降法由于每次仅仅采用一个样本来迭代,训练速度很快# -*- coding:utf-8 _*-# @author: Fu zihao# @file: pre01.pyimport numpy as npimport random# 学习率ALPHA = 0.001# 允许的最大误差ERROR = 0.01X1 = np.array(原创 2021-11-12 09:09:05 · 1605 阅读 · 0 评论 -
LDA算法推导
原创 2021-11-03 21:36:51 · 134 阅读 · 0 评论 -
机器学习西瓜决策树
原创 2021-10-26 20:00:34 · 171 阅读 · 0 评论 -
飞桨强化学习之Actor Critic Method(演员评论家算法)
代码示例# -*- coding:utf-8 _*-# @author: Fu zihao# @file: actorCriticMethod.py# @time: 2021/10/21 15:47import gym, osfrom itertools import countimport paddleimport paddle.nn as nnimport paddle.optimizer as optimimport paddle.nn.functional as Ffro.原创 2021-10-21 16:47:47 · 138 阅读 · 0 评论 -
MNIST手写体 paddlepaddle
使用paddlepaddle训练手写体MNIST数据集import paddlefrom paddle.nn import Linearimport paddle.nn.functional as Fimport osimport numpy as npimport matplotlib.pyplot as plt# MNIST类class MNIST(paddle.nn.Layer): def __init__(self): super(MNIST, self).原创 2021-10-19 19:48:54 · 851 阅读 · 0 评论 -
卷积神经网络训练cifar10数据集
使用飞桨训练cifar10数据集import paddleimport paddle.nn.functional as Ffrom paddle.vision.transforms import ToTensorimport numpy as npimport matplotlib.pyplot as plttransform = ToTensor()# 训练集cifar10_train = paddle.vision.datasets.Cifar10(mode='train',原创 2021-10-15 21:28:11 · 326 阅读 · 0 评论 -
主成分分析(PCA)
# -*- coding:utf-8 _*-import numpy as npData = np.array([[2.5, 2.4], [0.5, 0.7], [2.2, 2.9], [1.9, 2.2], [3.1, 3.0], [2.3, 2.7], .原创 2021-10-07 17:02:29 · 111 阅读 · 0 评论 -
天气预测(晴天or雨天)
# 晴天walkPsw = 0.6Prw = 0.1# 晴天shopPss = 0.3Prs = 0.4# 晴天clearPsc = 0.1Prc = 0.5# 晴天转晴天Ps_s = 0.6# 晴天转阴天Ps_r = 0.4# 阴天转晴天Pr_s = 0.3# 阴天转阴天Pr_r = 0.7# 第一天下雨def Rday1(): prob = 0.6 * Prw return prob# 第一天晴天def Sday1(): prob原创 2021-10-04 17:19:20 · 5608 阅读 · 0 评论 -
全连接单次更新
import numpy as nplearning_rate = 0.001x1 = x2 = x3 = 1y1 = y2 = 1w14 = w15 = w16 = w24 = w25 = w26 = w34 = w35 = w36 = w17 = w27 = w37 = 1w48 = w49 = w58 = w59 = w68 = w69 = w78 = w79 = 1X = np.array([x1, x2, x3]).reshape(3, 1)W1 = np.array([[w1.原创 2021-09-24 10:57:27 · 144 阅读 · 0 评论 -
改进欧拉公式
代码实现from matplotlib import pyplot as pltdef y(x, y): y = 1.1 * y - (0.2 * x) / y return float("%.2f" % y)def collection(x0, y0, h): x1 = x0 + h yp = y0 + h * y(x0, y0) yc = y0 + h * y(x1, yp) y1 = (1 / 2) * (yc + yp) ret.原创 2021-09-24 10:54:57 · 361 阅读 · 0 评论 -
全连接层公式推导
#mermaid-svg-9kdIveOAARBgUNuK .label{font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family);fill:#333;color:#333}#mermaid-svg-9kdIveOAARBgUNuK .label text{fill:#333}#mermaid-svg-9kdIveOAARBgUNuK .node rect,#mermaid-svg-9kdIveOAA.原创 2021-09-17 20:18:57 · 2062 阅读 · 0 评论 -
第四次作业
1. 欧拉公式例题之python求解问题描述:代码实现 # -*- coding:utf-8 _*- # @author: Fu zihao # @file: cal01.py # @time: 2021/9/14 18:48 from matplotlib import pyplot as plt # 计算结果 def iteration(x, y, times): print("x1:", x, "y1:", y) x_a = [] y_原创 2021-09-14 21:28:28 · 238 阅读 · 0 评论 -
第三个作业
# -*- coding:utf-8 _*-import randomimport numpy as npdef sigmod_Z(X, W_raw): # sigmod(Z) x_r = np.dot(X, W_raw.T) result = 1 / (1 + np.exp(-x_r)) return resultdef deta(sg, X, t): # Deta dt0 = (sg - t) * sg * (1 - sg) dt原创 2021-09-08 00:42:16 · 80 阅读 · 0 评论 -
第二个作业
import numpy as npimport randomALPHA = 0.01EPS = 10e-4X1 = np.array([[2104],[1600],[2400],[1416],[3000]])X2 = np.array([[3],[3],[3],[2],[4]])X = np.array([[1, 2104, 3],[1, 1600, 3],[1, 2400, 3],[1, 1416, 2],[1, 3000, 4]])Y = np.array([40原创 2021-09-03 20:35:37 · 92 阅读 · 0 评论 -
第一次作业-numpy基本使用
转载 2021-09-02 10:30:07 · 101 阅读 · 0 评论