决策树之挑选好西瓜
一、决策树
决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy = 系统的凌乱程度,使用算法ID3, C4.5和C5.0生成树算法使用熵。这一度量是基于信息学理论中熵的概念。
决策树是一种树形结构,其中每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别。
样本数据如下:
二、将txt导入excel
创建一个空的xsl文件,以EXCEL打开:
点击数据中的自文本:
选择要导入的txt文件:
选择分隔符号和字符集:
选择空格:
确定:
成功导入:
三、用python求解
导入python模块:
import pandas as pd
import numpy as np
from collections import Counter
from math import log2
数据获取和处理函数:
#数据获取与处理
def getData(filePath):
data = pd.read_excel(filePath)
return data
def dataDeal(data):
dataList = np.array(data).tolist()
dataSet = [element[1:] for element in dataList]
return dataSet
获取属性名称和类别标记:
#获取属性名称
def getLabels(data):
labels = list(data.columns)[1:-1]
return labels
#获取类别标记
def targetClass(dataSet):
classification = set([element[-1] for element in dataSet])
return classification
叶节点标记:
#将分支结点标记为叶结点,选择样本数最多的类作为类标记
def majorityRule(dataSet):
mostKind = Counter([element[-1] for element in dataSet]).most_common(1)
majorityKind = mostKind[0][0]
return majorityKind
计算信息熵:
#计算信息熵
def infoEntropy(dataSet):
classColumnCnt = Counter([element[-1] for element in dataSet])
Ent = 0
for symbol in classColumnCnt:
p_k = classColumnCnt[symbol]/len(dataSet)
Ent = Ent-p_k*l