1103 Integer Factorization
The K−P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K−P factorization of N for any positive integers N, K and P.
Input Specification:
Each input file contains one test case which gives in a line the three positive integers N (≤400), K (≤N) and P (1<P≤7). The numbers in a line are separated by a space.
Output Specification:
For each case, if the solution exists, output in the format:
N = n[1]^P + ... n[K]^P
where n[i]
(i
= 1, ..., K
) is the i
-th factor. All the factors must be printed in non-increasing order.
Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 122+42+22+22+12, or 112+62+22+22+22, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { a1,a2,⋯,aK } is said to be larger than { b1,b2,⋯,bK } if there exists 1≤L≤K such that ai=bi for i<L and aL>bL.
If there is no solution, simple output Impossible
.
Sample Input 1:
169 5 2
Sample Output 1:
169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2
Sample Input 2:
169 167 3
Sample Output 2:
Impossible
总结:又是一道一点都不会的题目,真的想不到这个题目还能用DFS遍历的方法来写,长知识了,好好学习,多见多总结经验!
#include <iostream>
#include <cmath>
#include <vector>
using namespace std;
int n,k,p;
int maxfacSum=-1;
vector<int> v,ans,temp;
void init(){
int temp=0,index=1;
while(temp<=n){
v.push_back(temp);
temp=pow(index,p);
index++;
}
}
//tempK表示使用了多少个数,facSum表示这些数的总和
void dfs(int index,int temSum,int temk,int facSum){
if(temk==k){
if(temSum==n && facSum>maxfacSum){
ans=temp;
maxfacSum=facSum;
}
return;
}
while(index>=1){
if(temSum+v[index]<=n){
temp[temk]=index;
//dfs index不将index--表示可以重复使用同一个数
dfs(index,temSum+v[index],temk+1,facSum+index);
}
if(index==1) return;//为什么需要大于1,是因为v[0]存的是0,v[1]存的才是1
index--;
}
}
int main(){
scanf("%d%d%d",&n,&k,&p);
temp.resize(k);
init();
dfs(v.size()-1,0,0,0);
if(maxfacSum==-1) puts("Impossible");
else{
printf("%d = %d^%d",n,ans[0],p);
for(int i=1;i<ans.size();i++)
printf(" + %d^%d",ans[i],p);
}
return 0;
}
好好学习,天天向上!
我要考研!