【代码规范】.train(False)和.eval()的相似性和区别

【代码规范】.train(False)和.eval()的相似性和区别

一、.train(False) 和 .eval() 的功能

  • .train(False) 和 .eval() 在功能上非常相似
    • 都达到将模型从训练模式切换到评估模式的目的
    • 它们在使用和语义上有一些细微的区别

二、.train(False) 和 .eval() 的区别

2.1 .eval()

  • 一个更加直观和推荐的方式来将模型切换到评估模式
    • 它明确地告诉其他开发者你正在准备模型进行评估,比如验证或测试
  • 调用 .eval() 方法会递归地遍历模型的所有子模块,并将它们的 training 标志设置为 False
  • 这意味着任何包含训练相关行为的层,如批量归一化(Batch Normalization)和Dropout,将被设置为评估模式

2.2 .train(False)

  • .train(False) 是通过直接设置模型的 training 属性为 False 来实现同样的效果
    • 这可能在某些情况下看起来更像是一种底层的访问
    • 而 .eval() 更像是一个面向用户的API
  • .train() 方法本身是一个更通用的方法,它可以接受一个布尔参数
    • 当参数为 True 时,它将模型设置为训练模式
    • 当参数为 False 时,它将模型设置为评估模式
  • 使用 .train(False) 时,同样会递归地遍历模型的所有子模块,将它们的 training 标志设置为 False
    在这里插入图片描述

2.3 总结

  • 使用起来,两个的作用是一样无差别的,仅仅是.eval()更加清晰

三、.eval()更加规范

  1. 在功能上,.eval() 和 .train(False) 的确有相同的效果,都能将模型从训练模式切换到评估模式
    • 在大多数情况下,它们可以互换使用,且结果没有差异
  2. 从代码的可读性和最佳实践的角度来看,.eval() 提供了更清晰的意图表达
    • 明确地告诉阅读代码的人你正在将模型设置为评估模式
      • 对团队开发和维护代码尤其重要
    • 。.eval() 方法是PyTorch官方推荐用来切换模型到评估模式的方式
  3. .train(False) 也可以达到同样的目的,但从长远来看,使用 .eval() 可以提高代码的可维护性和理解性
  4. 在实际应用中,推荐使用 .eval(),除非有特定的技术原因需要直接操作 .train() 方法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值