可以跑通的kcf代码python版

相信很多小伙伴在github下载的代码都是2.x版本的,所以需要更改一些参数
下面是我改了一些的代码,还是有红字,但是可以跟踪了,如果完善,下一步会更新。

run模块:


```python
import numpy as np
import cv2
import sys
from time import time

import kcftracker

selectingObject = False
initTracking = False
onTracking = False
ix, iy, cx, cy = -1, -1, -1, -1
w, h = 0, 0

inteval = 1
duration = 0.01

# mouse callback function
def draw_boundingbox(event, x, y, flags, param):
	global selectingObject, initTracking, onTracking, ix, iy, cx,cy, w, h

	if event == cv2.EVENT_LBUTTONDOWN:
		selectingObject = True
		onTracking = False
		ix, iy = x, y
		cx, cy = x, y

	elif event == cv2.EVENT_MOUSEMOVE:
		cx, cy = x, y

	elif event == cv2.EVENT_LBUTTONUP:
		selectingObject = False
		if(abs(x-ix)>10 and abs(y-iy)>10):
			w, h = abs(x - ix), abs(y - iy)
			ix, iy = min(x, ix), min(y, iy)
			initTracking = True
		else:
			onTracking = False

	elif event == cv2.EVENT_RBUTTONDOWN:
		onTracking = False
		if(w>0):
			ix, iy = x-w/2, y-h/2
			initTracking = True



if __name__ == '__main__':

	if(len(sys.argv)==1):
		cap = cv2.VideoCapture(0)
	elif(len(sys.argv)==2):
		if(sys.argv[1].isdigit()):  # True if sys.argv[1] is str of a nonnegative integer
			cap = cv2.VideoCapture(int(sys.argv[1]))
		else:
			cap = cv2.VideoCapture(sys.argv[1])
			inteval = 30
	else:  assert(0), "too many arguments"

	tracker = kcftracker.KCFTracker(True, True, True)  # hog, fixed_window, multiscale
	#if you use hog feature, there will be a short pause after you draw a first boundingbox, that is due to the use of Numba.

	cv2.namedWindow('tracking')
	cv2.setMouseCallback('tracking',draw_boundingbox)

	while(cap.isOpened()):
		ret, frame = cap.read()
		if not ret:
			break

		if(selectingObject):
			cv2.rectangle(frame,(ix,iy), (cx,cy), (0,255,255), 1)
		elif(initTracking):
			cv2.rectangle(frame,(ix,iy), (ix+w,iy+h), (0,255,255), 2)

			tracker.init([ix,iy,w,h], frame)

			initTracking = False
			onTracking = True
		elif(onTracking):
			t0 = time()
			boundingbox = tracker.update(frame)
			t1 = time()

			boundingbox = list(map(int, boundingbox))
			cv2.rectangle(frame,(boundingbox[0],boundingbox[1]), (boundingbox[0]+boundingbox[2],boundingbox[1]+boundingbox[3]), (0,255,255), 1)

			duration = 0.8*duration + 0.2*(t1-t0)
			#duration = t1-t0
			cv2.putText(frame, 'FPS: '+str(1/duration)[:4].strip('.'), (8,20), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0,0,255), 2)

		cv2.imshow('tracking', frame)
		c = cv2.waitKey(inteval) & 0xFF
		if c==27 or c==ord('q'):
			break

	cap.release()
	cv2.destroyAllWindows()

kcftracker模块:

import numpy as np
import cv2

import fhog


# ffttools
def fftd(img, backwards=False):
    # shape of img can be (m,n), (m,n,1) or (m,n,2)
    # in my test, fft provided by numpy and scipy are slower than cv2.dft
    return cv2.dft(np.float32(img), flags=(
        (cv2.DFT_INVERSE | cv2.DFT_SCALE) if backwards else cv2.DFT_COMPLEX_OUTPUT))  # 'flags =' is necessary!


def real(img):
    return img[:, :, 0]


def imag(img):
    return img[:, :, 1]


def complexMultiplication(a, b):
    res = np.zeros(a.shape, a.dtype)

    res[:, :, 0] = a[:, :, 0] * b[:, :, 0] - a[:, :, 1] * b[:, :, 1]
    res[:, :, 1] = a[:, :, 0] * b[:, :, 1] + a[:, :, 1] * b[:, :, 0]
    return res


def complexDivision(a, b):
    res = np.zeros(a.shape, a.dtype)
    divisor = 1. / (b[:, :, 0] ** 2 + b[:, :, 1] ** 2)

    res[:, :, 0] = (a[:, :, 0] * b[:, :, 0] + a[:, :, 1] * b[:, :, 1]) * divisor
    res[:, :, 1] = (a[:, :, 1] * b[:, :, 0] + a[:, :, 0] * b[:, :, 1]) * divisor
    return res


def rearrange(img):
    # return np.fft.fftshift(img, axes=(0,1))
    assert (img.ndim == 2)
    img_ = np.zeros(img.shape, img.dtype)
    xh, yh = img.shape[1] / 2, img.shape[0] / 2
    print("xh = ", xh)
    print("yh = ", yh)
    print("img = ", img.shape)
    img
    xh = int(xh)
    yh = int(yh)
    img_[0:yh, 0:xh], img_[yh:img.shape[0], xh:img.shape[1]] = img[yh:img.shape[0], xh:img.shape[1]], img[0:yh, 0:xh]
    img_[0:yh, xh:img.shape[1]], img_[yh:img.shape[0], 0:xh] = img[yh:img.shape[0], 0:xh], img[0:yh, xh:img.shape[1]]
    return img_


# recttools
def x2(rect):
    return rect[0] + rect[2]


def y2(rect):
    return rect[1] + rect[3]


def limit(rect, limit):
    if (rect[0] + rect[2] > limit[0] + limit[2]):
        rect[2] = limit[0] + limit[2] - rect[0]
    if (rect[1] + rect[3] > limit[1] + limit[3]):
        rect[3] = limit[1] + limit[3] - rect[1]
    if (rect[0] < limit[0]):
        rect[2] -= (limit[0] - rect[0])
        rect[0] = limit[0]
    if (rect[1] < limit[1]):
        rect[3] -= (limit[1] - rect[1])
        rect[1] = limit[1]
    if (rect[2] < 0):
        rect[2] = 0
    if (rect[3] < 0):
        rect[3] = 0
    return rect


def getBorder(original, limited):
    res = [0, 0, 0, 0]
    res[0] = limited[0] - original[0]
    res[1] = limited[1] - original[1]
    res[2] = x2(original) - x2(limited)
    res[3] = y2(original) - y2(limited)
    assert (np.all(np.array(res) >= 0))
    return res


def subwindow(img, window, borderType=cv2.BORDER_CONSTANT):
    cutWindow = [x for x in window]
    limit(cutWindow, [0, 0, img.shape[1], img.shape[0]])  # modify cutWindow
    assert (cutWindow[2] > 0 and cutWindow[3] > 0)
    border = getBorder(window, cutWindow)
    res = img[cutWindow[1]:cutWindow[1] + cutWindow[3], cutWindow[0]:cutWindow[0] + cutWindow[2]]

    if (border != [0, 0, 0, 0]):
        res = cv2.copyMakeBorder(res, border[1], border[3], border[0], border[2], borderType)
    return res


# KCF tracker
class KCFTracker:
    def __init__(self, hog=False, fixed_window=True, multiscale=False):
        self.lambdar = 0.0001  # regularization
        self.padding = 2.5  # extra area surrounding the target
        self.output_sigma_factor = 0.125  # bandwidth of gaussian target
        if (hog):  # HOG feature
            # VOT
            self.interp_factor = 0.012  # linear interpolation factor for adaptation
            self.sigma = 0.6  # gaussian kernel bandwidth
            # TPAMI   #interp_factor = 0.02   #sigma = 0.5
            self.cell_size = 4  # HOG cell size
            self._hogfeatures = True
        else:  # raw gray-scale image # aka CSK tracker
            self.interp_factor = 0.075
            self.sigma = 0.2
            self.cell_size = 1
            self._hogfeatures = False
        if (multiscale):
            self.template_size = 96  # template size
            self.scale_step = 1.05  # scale step for multi-scale estimation
            self.scale_weight = 0.96  # to downweight detection scores of other scales for added stability
        elif (fixed_window):
            self.template_size = 96
            self.scale_step = 1
        else:
            self.template_size = 1
            self.scale_step = 1
        self._tmpl_sz = [0, 0]  # cv::Size, [width,height]  #[int,int]
        self._roi = [0., 0., 0., 0.]  # cv::Rect2f, [x,y,width,height]  #[float,float,float,float]
        self.size_patch = [0, 0, 0]  # [int,int,int]
        self._scale = 1.  # float
        self._alphaf = None  # numpy.ndarray    (size_patch[0], size_patch[1], 2)
        self._prob = None  # numpy.ndarray    (size_patch[0], size_patch[1], 2)
        self._tmpl = None  # numpy.ndarray    raw: (size_patch[0], size_patch[1])   hog: (size_patch[2], size_patch[0]*size_patch[1])
        self.hann = None  # numpy.ndarray    raw: (size_patch[0], size_patch[1])   hog: (size_patch[2], size_patch[0]*size_patch[1])

    def subPixelPeak(self, left, center, right):
        divisor = 2 * center - right - left  # float
        return (0 if abs(divisor) < 1e-3 else 0.5 * (right - left) / divisor)

    def createHanningMats(self):
        hann2t, hann1t = np.ogrid[0:self.size_patch[0], 0:self.size_patch[1]]

        hann1t = 0.5 * (1 - np.cos(2 * np.pi * hann1t / (self.size_patch[1] - 1)))
        hann2t = 0.5 * (1 - np.cos(2 * np.pi * hann2t / (self.size_patch[0] - 1)))
        hann2d = hann2t * hann1t

        if (self._hogfeatures):
            hann1d = hann2d.reshape(self.size_patch[0] * self.size_patch[1])
            self.hann = np.zeros((self.size_patch[2], 1), np.float32) + hann1d
        else:
            self.hann = hann2d
        self.hann = self.hann.astype(np.float32)

    def createGaussianPeak(self, sizey, sizex):
        syh, sxh = sizey / 2, sizex / 2
        output_sigma = np.sqrt(sizex * sizey) / self.padding * self.output_sigma_factor
        mult = -0.5 / (output_sigma * output_sigma)
        y, x = np.ogrid[0:sizey, 0:sizex]
        y, x = (y - syh) ** 2, (x - sxh) ** 2
        res = np.exp(mult * (y + x))
        return fftd(res)

    def gaussianCorrelation(self, x1, x2):
        if (self._hogfeatures):
            c = np.zeros((self.size_patch[0], self.size_patch[1]), np.float32)
            print("size_patch = ", self.size_patch)
            print("size_patch[0] = ", self.size_patch[0])
            print("size_patch[1] = ", self.size_patch[1])
            for i in range(self.size_patch[2]):
                x1aux = x1[i, :].reshape((self.size_patch[0], self.size_patch[1]))
                x2aux = x2[i, :].reshape((self.size_patch[0], self.size_patch[1]))
                caux = cv2.mulSpectrums(fftd(x1aux), fftd(x2aux), 0, conjB=True)
                caux = real(fftd(caux, True))
                # caux = rearrange(caux)
                c += caux
            c = rearrange(c)
        else:
            c = cv2.mulSpectrums(fftd(x1), fftd(x2), 0, conjB=True)  # 'conjB=' is necessary!
            c = fftd(c, True)
            c = real(c)
            c = rearrange(c)

        if (x1.ndim == 3 and x2.ndim == 3):
            d = (np.sum(x1[:, :, 0] * x1[:, :, 0]) + np.sum(x2[:, :, 0] * x2[:, :, 0]) - 2.0 * c) / (
                        self.size_patch[0] * self.size_patch[1] * self.size_patch[2])
        elif (x1.ndim == 2 and x2.ndim == 2):
            d = (np.sum(x1 * x1) + np.sum(x2 * x2) - 2.0 * c) / (
                        self.size_patch[0] * self.size_patch[1] * self.size_patch[2])

        d = d * (d >= 0)
        d = np.exp(-d / (self.sigma * self.sigma))

        return d

    def getFeatures(self, image, inithann, scale_adjust=1.0):
        extracted_roi = [0, 0, 0, 0]  # [int,int,int,int]
        print("11111111111111 = ", self._roi)
        # _roi = [0,0,0,0]
        # for item in self._roi:
        # print("item = ", item)

        # print("11111111111111111 ",self._roi)
        cx = self._roi[0] + self._roi[2] / 2  # float
        cy = self._roi[1] + self._roi[3] / 2  # float

        if (inithann):
            padded_w = self._roi[2] * self.padding
            padded_h = self._roi[3] * self.padding
            print("self.padding = ", self.padding)
            print("self._roi[ = ", self._roi)

            if (self.template_size > 1):
                print("padded_w = ", padded_w)
                print("padded_h = ", padded_h)
                if (padded_w >= padded_h):
                    self._scale = padded_w / float(self.template_size)
                else:
                    self._scale = padded_h / float(self.template_size)
                print("self._scale = ", self._scale)
                self._tmpl_sz[0] = int(padded_w / self._scale)
                self._tmpl_sz[1] = int(padded_h / self._scale)
            else:
                self._tmpl_sz[0] = int(padded_w)
                self._tmpl_sz[1] = int(padded_h)
                self._scale = 1.

            if (self._hogfeatures):
                self._tmpl_sz[0] = int(
                    (self._tmpl_sz[0]) // (2 * self.cell_size)) * 2 * self.cell_size + 2 * self.cell_size
                self._tmpl_sz[1] = int(
                    (self._tmpl_sz[1]) // (2 * self.cell_size)) * 2 * self.cell_size + 2 * self.cell_size
            else:
                self._tmpl_sz[0] = int(self._tmpl_sz[0]) / 2 * 2
                self._tmpl_sz[1] = int(self._tmpl_sz[1]) / 2 * 2

        extracted_roi[2] = int(scale_adjust * self._scale * self._tmpl_sz[0])
        extracted_roi[3] = int(scale_adjust * self._scale * self._tmpl_sz[1])
        extracted_roi[0] = int(cx - extracted_roi[2] / 2)
        extracted_roi[1] = int(cy - extracted_roi[3] / 2)

        z = subwindow(image, extracted_roi, cv2.BORDER_REPLICATE)
        if (z.shape[1] != self._tmpl_sz[0] or z.shape[0] != self._tmpl_sz[1]):
            self._tmpl_sz[0] = int(self._tmpl_sz[0])
            self._tmpl_sz[1] = int(self._tmpl_sz[1])
            print("self._tmpl_sz = ", self._tmpl_sz)
            z = cv2.resize(z, tuple(self._tmpl_sz))

        if (self._hogfeatures):
            mapp = {'sizeX': 0, 'sizeY': 0, 'numFeatures': 0, 'map': 0}
            mapp = fhog.getFeatureMaps(z, self.cell_size, mapp)
            mapp = fhog.normalizeAndTruncate(mapp, 0.2)
            mapp = fhog.PCAFeatureMaps(mapp)

            print("sizeY = ", mapp['sizeY'])
            print("sizeX = ", mapp['sizeX'])
            print("numFeatures = ", mapp['numFeatures'])
            self.size_patch = map(int, [mapp['sizeY'], mapp['sizeX'], mapp['numFeatures']])
            self.size_patch = list(self.size_patch)
            FeaturesMap = mapp['map'].reshape((self.size_patch[0] * self.size_patch[1],
                                               self.size_patch[2])).T  # (size_patch[2], size_patch[0]*size_patch[1])
        else:
            if (z.ndim == 3 and z.shape[2] == 3):
                FeaturesMap = cv2.cvtColor(z,
                                           cv2.COLOR_BGR2GRAY)  # z:(size_patch[0], size_patch[1], 3)  FeaturesMap:(size_patch[0], size_patch[1])   #np.int8  #0~255
            elif (z.ndim == 2):
                FeaturesMap = z  # (size_patch[0], size_patch[1]) #np.int8  #0~255
            FeaturesMap = FeaturesMap.astype(np.float32) / 255.0 - 0.5
            self.size_patch = [z.shape[0], z.shape[1], 1]

        if (inithann):
            self.createHanningMats()  # createHanningMats need size_patch

        FeaturesMap = self.hann * FeaturesMap
        return FeaturesMap

    def detect(self, z, x):
        k = self.gaussianCorrelation(x, z)
        res = real(fftd(complexMultiplication(self._alphaf, fftd(k)), True))

        _, pv, _, pi = cv2.minMaxLoc(res)  # pv:float  pi:tuple of int
        p = [float(pi[0]), float(pi[1])]  # cv::Point2f, [x,y]  #[float,float]

        if (pi[0] > 0 and pi[0] < res.shape[1] - 1):
            p[0] += self.subPixelPeak(res[pi[1], pi[0] - 1], pv, res[pi[1], pi[0] + 1])
        if (pi[1] > 0 and pi[1] < res.shape[0] - 1):
            p[1] += self.subPixelPeak(res[pi[1] - 1, pi[0]], pv, res[pi[1] + 1, pi[0]])

        p[0] -= res.shape[1] / 2.
        p[1] -= res.shape[0] / 2.

        return p, pv

    def train(self, x, train_interp_factor):
        k = self.gaussianCorrelation(x, x)
        alphaf = complexDivision(self._prob, fftd(k) + self.lambdar)

        self._tmpl = (1 - train_interp_factor) * self._tmpl + train_interp_factor * x
        self._alphaf = (1 - train_interp_factor) * self._alphaf + train_interp_factor * alphaf

    def init(self, roi, image):
        # self._roi = map(float, roi)
        self._roi = roi
        assert (roi[2] > 0 and roi[3] > 0)
        self._tmpl = self.getFeatures(image, 1)
        self._prob = self.createGaussianPeak(self.size_patch[0], self.size_patch[1])
        self._alphaf = np.zeros((self.size_patch[0], self.size_patch[1], 2), np.float32)

        self.train(self._tmpl, 1.0)

    def update(self, image):
        if (self._roi[0] + self._roi[2] <= 0):  self._roi[0] = -self._roi[2] + 1
        if (self._roi[1] + self._roi[3] <= 0):  self._roi[1] = -self._roi[2] + 1
        if (self._roi[0] >= image.shape[1] - 1):  self._roi[0] = image.shape[1] - 2
        if (self._roi[1] >= image.shape[0] - 1):  self._roi[1] = image.shape[0] - 2

        cx = self._roi[0] + self._roi[2] / 2.
        cy = self._roi[1] + self._roi[3] / 2.

        loc, peak_value = self.detect(self._tmpl, self.getFeatures(image, 0, 1.0))

        if (self.scale_step != 1):
            # Test at a smaller _scale
            new_loc1, new_peak_value1 = self.detect(self._tmpl, self.getFeatures(image, 0, 1.0 / self.scale_step))
            # Test at a bigger _scale
            new_loc2, new_peak_value2 = self.detect(self._tmpl, self.getFeatures(image, 0, self.scale_step))

            if (self.scale_weight * new_peak_value1 > peak_value and new_peak_value1 > new_peak_value2):
                loc = new_loc1
                peak_value = new_peak_value1
                self._scale /= self.scale_step
                self._roi[2] /= self.scale_step
                self._roi[3] /= self.scale_step
            elif (self.scale_weight * new_peak_value2 > peak_value):
                loc = new_loc2
                peak_value = new_peak_value2
                self._scale *= self.scale_step
                self._roi[2] *= self.scale_step
                self._roi[3] *= self.scale_step

        self._roi[0] = cx - self._roi[2] / 2.0 + loc[0] * self.cell_size * self._scale
        self._roi[1] = cy - self._roi[3] / 2.0 + loc[1] * self.cell_size * self._scale

        if (self._roi[0] >= image.shape[1] - 1):  self._roi[0] = image.shape[1] - 1
        if (self._roi[1] >= image.shape[0] - 1):  self._roi[1] = image.shape[0] - 1
        if (self._roi[0] + self._roi[2] <= 0):  self._roi[0] = -self._roi[2] + 2
        if (self._roi[1] + self._roi[3] <= 0):  self._roi[1] = -self._roi[3] + 2
        assert (self._roi[2] > 0 and self._roi[3] > 0)

        x = self.getFeatures(image, 0, 1.0)
        self.train(x, self.interp_factor)

        return self._roi

fhog模块:

import numpy as np
import cv2
from numba import jit

# constant
NUM_SECTOR = 9
FLT_EPSILON = 1e-07


@jit
def func1(dx, dy, boundary_x, boundary_y, height, width, numChannels):
    r = np.zeros((height, width), np.float32)
    alfa = np.zeros((height, width, 2), np.int)

    for j in range(1, height - 1):
        for i in range(1, width - 1):
            c = 0
            x = dx[j, i, c]
            y = dy[j, i, c]
            r[j, i] = np.sqrt(x * x + y * y)

            for ch in range(1, numChannels):
                tx = dx[j, i, ch]
                ty = dy[j, i, ch]
                magnitude = np.sqrt(tx * tx + ty * ty)
                if (magnitude > r[j, i]):
                    r[j, i] = magnitude
                    c = ch
                    x = tx
                    y = ty

            mmax = boundary_x[0] * x + boundary_y[0] * y
            maxi = 0

            for kk in range(0, NUM_SECTOR):
                dotProd = boundary_x[kk] * x + boundary_y[kk] * y
                if (dotProd > mmax):
                    mmax = dotProd
                    maxi = kk
                elif (-dotProd > mmax):
                    mmax = -dotProd
                    maxi = kk + NUM_SECTOR

            alfa[j, i, 0] = maxi % NUM_SECTOR
            alfa[j, i, 1] = maxi
    return r, alfa


@jit
def func2(dx, dy, boundary_x, boundary_y, r, alfa, nearest, w, k, height, width, sizeX, sizeY, p, stringSize):
    mapp = np.zeros((sizeX * sizeY * p), np.float32)
    for i in range(sizeY):
        for j in range(sizeX):
            for ii in range(k):
                for jj in range(k):
                    if ((i * k + ii > 0) and (i * k + ii < height - 1) and (j * k + jj > 0) and (
                            j * k + jj < width - 1)):
                        mapp[i * stringSize + j * p + alfa[k * i + ii, j * k + jj, 0]] += r[k * i + ii, j * k + jj] * w[
                            ii, 0] * w[jj, 0]
                        mapp[i * stringSize + j * p + alfa[k * i + ii, j * k + jj, 1] + NUM_SECTOR] += r[
                                                                                                           k * i + ii, j * k + jj] * \
                                                                                                       w[ii, 0] * w[
                                                                                                           jj, 0]
                        if ((i + nearest[ii] >= 0) and (i + nearest[ii] <= sizeY - 1)):
                            mapp[(i + nearest[ii]) * stringSize + j * p + alfa[k * i + ii, j * k + jj, 0]] += r[
                                                                                                                  k * i + ii, j * k + jj] * \
                                                                                                              w[ii, 1] * \
                                                                                                              w[jj, 0]
                            mapp[(i + nearest[ii]) * stringSize + j * p + alfa[
                                k * i + ii, j * k + jj, 1] + NUM_SECTOR] += r[k * i + ii, j * k + jj] * w[ii, 1] * w[
                                jj, 0]
                        if ((j + nearest[jj] >= 0) and (j + nearest[jj] <= sizeX - 1)):
                            mapp[i * stringSize + (j + nearest[jj]) * p + alfa[k * i + ii, j * k + jj, 0]] += r[
                                                                                                                  k * i + ii, j * k + jj] * \
                                                                                                              w[ii, 0] * \
                                                                                                              w[jj, 1]
                            mapp[i * stringSize + (j + nearest[jj]) * p + alfa[
                                k * i + ii, j * k + jj, 1] + NUM_SECTOR] += r[k * i + ii, j * k + jj] * w[ii, 0] * w[
                                jj, 1]
                        if ((i + nearest[ii] >= 0) and (i + nearest[ii] <= sizeY - 1) and (j + nearest[jj] >= 0) and (
                                j + nearest[jj] <= sizeX - 1)):
                            mapp[(i + nearest[ii]) * stringSize + (j + nearest[jj]) * p + alfa[
                                k * i + ii, j * k + jj, 0]] += r[k * i + ii, j * k + jj] * w[ii, 1] * w[jj, 1]
                            mapp[(i + nearest[ii]) * stringSize + (j + nearest[jj]) * p + alfa[
                                k * i + ii, j * k + jj, 1] + NUM_SECTOR] += r[k * i + ii, j * k + jj] * w[ii, 1] * w[
                                jj, 1]
    return mapp


@jit
def func3(partOfNorm, mappmap, sizeX, sizeY, p, xp, pp):
    newData = np.zeros((sizeY * sizeX * pp), np.float32)
    for i in range(1, sizeY + 1):
        for j in range(1, sizeX + 1):
            pos1 = i * (sizeX + 2) * xp + j * xp
            pos2 = (i - 1) * sizeX * pp + (j - 1) * pp

            valOfNorm = np.sqrt(partOfNorm[(i) * (sizeX + 2) + (j)] +
                                partOfNorm[(i) * (sizeX + 2) + (j + 1)] +
                                partOfNorm[(i + 1) * (sizeX + 2) + (j)] +
                                partOfNorm[(i + 1) * (sizeX + 2) + (j + 1)]) + FLT_EPSILON
            newData[pos2:pos2 + p] = mappmap[pos1:pos1 + p] / valOfNorm
            newData[pos2 + 4 * p:pos2 + 6 * p] = mappmap[pos1 + p:pos1 + 3 * p] / valOfNorm

            valOfNorm = np.sqrt(partOfNorm[(i) * (sizeX + 2) + (j)] +
                                partOfNorm[(i) * (sizeX + 2) + (j + 1)] +
                                partOfNorm[(i - 1) * (sizeX + 2) + (j)] +
                                partOfNorm[(i - 1) * (sizeX + 2) + (j + 1)]) + FLT_EPSILON
            newData[pos2 + p:pos2 + 2 * p] = mappmap[pos1:pos1 + p] / valOfNorm
            newData[pos2 + 6 * p:pos2 + 8 * p] = mappmap[pos1 + p:pos1 + 3 * p] / valOfNorm

            valOfNorm = np.sqrt(partOfNorm[(i) * (sizeX + 2) + (j)] +
                                partOfNorm[(i) * (sizeX + 2) + (j - 1)] +
                                partOfNorm[(i + 1) * (sizeX + 2) + (j)] +
                                partOfNorm[(i + 1) * (sizeX + 2) + (j - 1)]) + FLT_EPSILON
            newData[pos2 + 2 * p:pos2 + 3 * p] = mappmap[pos1:pos1 + p] / valOfNorm
            newData[pos2 + 8 * p:pos2 + 10 * p] = mappmap[pos1 + p:pos1 + 3 * p] / valOfNorm

            valOfNorm = np.sqrt(partOfNorm[(i) * (sizeX + 2) + (j)] +
                                partOfNorm[(i) * (sizeX + 2) + (j - 1)] +
                                partOfNorm[(i - 1) * (sizeX + 2) + (j)] +
                                partOfNorm[(i - 1) * (sizeX + 2) + (j - 1)]) + FLT_EPSILON
            newData[pos2 + 3 * p:pos2 + 4 * p] = mappmap[pos1:pos1 + p] / valOfNorm
            newData[pos2 + 10 * p:pos2 + 12 * p] = mappmap[pos1 + p:pos1 + 3 * p] / valOfNorm
    return newData


@jit
def func4(mappmap, p, sizeX, sizeY, pp, yp, xp, nx, ny):
    newData = np.zeros((sizeX * sizeY * pp), np.float32)
    for i in range(sizeY):
        for j in range(sizeX):
            pos1 = (i * sizeX + j) * p
            pos2 = (i * sizeX + j) * pp

            for jj in range(2 * xp):  # 2*9
                newData[pos2 + jj] = np.sum(mappmap[pos1 + yp * xp + jj: pos1 + 3 * yp * xp + jj: 2 * xp]) * ny
            for jj in range(xp):  # 9
                newData[pos2 + 2 * xp + jj] = np.sum(mappmap[pos1 + jj: pos1 + jj + yp * xp: xp]) * ny
            for ii in range(yp):  # 4
                newData[pos2 + 3 * xp + ii] = np.sum(
                    mappmap[pos1 + yp * xp + ii * xp * 2: pos1 + yp * xp + ii * xp * 2 + 2 * xp]) * nx
    return newData


def getFeatureMaps(image, k, mapp):
    kernel = np.array([[-1., 0., 1.]], np.float32)

    height = image.shape[0]
    width = image.shape[1]
    assert (image.ndim == 3 and image.shape[2])
    numChannels = 3  # (1 if image.ndim==2 else image.shape[2])

    print("image1111 = ", image.shape)

    sizeX = width // k
    sizeY = height // k
    print("sizeX = ", sizeX)
    print("sizeY = ", sizeY)

    px = 3 * NUM_SECTOR
    p = px
    stringSize = sizeX * p

    mapp['sizeX'] = sizeX
    mapp['sizeY'] = sizeY
    mapp['numFeatures'] = p
    mapp['map'] = np.zeros(int(mapp['sizeX'] * mapp['sizeY'] * mapp['numFeatures']), np.float32)

    dx = cv2.filter2D(np.float32(image), -1, kernel)  # np.float32(...) is necessary
    dy = cv2.filter2D(np.float32(image), -1, kernel.T)

    arg_vector = np.arange(NUM_SECTOR + 1).astype(np.float32) * np.pi / NUM_SECTOR
    boundary_x = np.cos(arg_vector)
    boundary_y = np.sin(arg_vector)

    '''
    ### original implementation
    r, alfa = func1(dx, dy, boundary_x, boundary_y, height, width, numChannels) #func1 without @jit  ### 
    ### 40x speedup
    magnitude = np.sqrt(dx**2 + dy**2)
    r = np.max(magnitude, axis=2)
    c = np.argmax(magnitude, axis=2)
    idx = (np.arange(c.shape[0])[:,np.newaxis], np.arange(c.shape[1]), c)
    x, y = dx[idx], dy[idx]

    dotProd = x[:,:,np.newaxis] * boundary_x[np.newaxis,np.newaxis,:] + y[:,:,np.newaxis] * boundary_y[np.newaxis,np.newaxis,:]
    dotProd = np.concatenate((dotProd, -dotProd), axis=2)
    maxi = np.argmax(dotProd, axis=2)
    alfa = np.dstack((maxi % NUM_SECTOR, maxi)) ###
    '''
    ### 200x speedup
    r, alfa = func1(dx, dy, boundary_x, boundary_y, height, width, numChannels)  # with @jit
    ### ~0.001s

    nearest = np.ones((k), np.int)
    print("k ==============", k)
    nearest[0:int(k / 2)] = -1

    w = np.zeros((k, 2), np.float32)
    a_x = np.concatenate((k / 2 - np.arange(k / 2) - 0.5, np.arange(k / 2, k) - k / 2 + 0.5)).astype(np.float32)
    b_x = np.concatenate((k / 2 + np.arange(k / 2) + 0.5, -np.arange(k / 2, k) + k / 2 - 0.5 + k)).astype(np.float32)
    w[:, 0] = 1.0 / a_x * ((a_x * b_x) / (a_x + b_x))
    w[:, 1] = 1.0 / b_x * ((a_x * b_x) / (a_x + b_x))

    '''
    ### original implementation
    mapp['map'] = func2(dx, dy, boundary_x, boundary_y, r, alfa, nearest, w, k, height, width, sizeX, sizeY, p, stringSize) #func2 without @jit  ###
    '''
    ### 500x speedup
    print("stringSize = ", stringSize)
    print("p = ", p)
    print("k = ", k)
    print("height = ", height)
    print("width11111 = ", width)
    print("sizeX11111 = ", sizeX)
    print("sizeY11111 = ", sizeY)
    mapp['map'] = func2(dx, dy, boundary_x, boundary_y, r, alfa, nearest, w, k, height, width, int(sizeX), int(sizeY),
                        p, int(stringSize))  # with @jit
    ### ~0.001s

    return mapp


def normalizeAndTruncate(mapp, alfa):
    sizeX = mapp['sizeX']
    sizeY = mapp['sizeY']

    p = NUM_SECTOR
    xp = NUM_SECTOR * 3
    pp = NUM_SECTOR * 12

    '''
    ### original implementation
    partOfNorm = np.zeros((sizeY*sizeX), np.float32)

    for i in range(sizeX*sizeY):
        pos = i * mapp['numFeatures']
        partOfNorm[i] = np.sum(mapp['map'][pos:pos+p]**2) ###
    '''
    ### 50x speedup

    lenarry = int(sizeX * sizeY * mapp['numFeatures'])

    idx = np.arange(0, lenarry, mapp['numFeatures']).reshape((int(sizeX * sizeY), 1)) + np.arange(p)
    partOfNorm = np.sum(mapp['map'][idx] ** 2, axis=1)  ### ~0.0002s

    sizeX, sizeY = sizeX - 2, sizeY - 2

    '''
    ### original implementation
    newData = func3(partOfNorm, mapp['map'], sizeX, sizeY, p, xp, pp) #func3 without @jit  ###

    ### 30x speedup
    newData = np.zeros((sizeY*sizeX*pp), np.float32)
    idx = (np.arange(1,sizeY+1)[:,np.newaxis] * (sizeX+2) + np.arange(1,sizeX+1)).reshape((sizeY*sizeX, 1))   # much faster than it's List Comprehension counterpart (see next line)
    #idx = np.array([[i*(sizeX+2) + j] for i in range(1,sizeY+1) for j in range(1,sizeX+1)])
    pos1 = idx * xp
    pos2 = np.arange(sizeY*sizeX)[:,np.newaxis] * pp

    valOfNorm1 = np.sqrt(partOfNorm[idx] + partOfNorm[idx+1] + partOfNorm[idx+sizeX+2] + partOfNorm[idx+sizeX+2+1]) + FLT_EPSILON
    valOfNorm2 = np.sqrt(partOfNorm[idx] + partOfNorm[idx+1] + partOfNorm[idx-sizeX-2] + partOfNorm[idx+sizeX-2+1]) + FLT_EPSILON
    valOfNorm3 = np.sqrt(partOfNorm[idx] + partOfNorm[idx-1] + partOfNorm[idx+sizeX+2] + partOfNorm[idx+sizeX+2-1]) + FLT_EPSILON
    valOfNorm4 = np.sqrt(partOfNorm[idx] + partOfNorm[idx-1] + partOfNorm[idx-sizeX-2] + partOfNorm[idx+sizeX-2-1]) + FLT_EPSILON

    map1 = mapp['map'][pos1 + np.arange(p)]
    map2 = mapp['map'][pos1 + np.arange(p,3*p)]

    newData[pos2 + np.arange(p)] = map1 / valOfNorm1
    newData[pos2 + np.arange(4*p,6*p)] = map2 / valOfNorm1
    newData[pos2 + np.arange(p,2*p)] = map1 / valOfNorm2
    newData[pos2 + np.arange(6*p,8*p)] = map2 / valOfNorm2
    newData[pos2 + np.arange(2*p,3*p)] = map1 / valOfNorm3
    newData[pos2 + np.arange(8*p,10*p)] = map2 / valOfNorm3
    newData[pos2 + np.arange(3*p,4*p)] = map1 / valOfNorm4
    newData[pos2 + np.arange(10*p,12*p)] = map2 / valOfNorm4 ###
    '''
    ### 30x speedup
    newData = func3(partOfNorm, mapp['map'], int(sizeX), int(sizeY), p, xp, pp)  # with @jit
    ###
    # truncation
    newData[newData > alfa] = alfa

    mapp['numFeatures'] = pp
    mapp['sizeX'] = sizeX
    mapp['sizeY'] = sizeY
    mapp['map'] = newData

    return mapp


def PCAFeatureMaps(mapp):
    sizeX = mapp['sizeX']
    sizeY = mapp['sizeY']

    p = mapp['numFeatures']
    pp = NUM_SECTOR * 3 + 4
    yp = 4
    xp = NUM_SECTOR

    nx = 1.0 / np.sqrt(xp * 2)
    ny = 1.0 / np.sqrt(yp)

    '''
    ### original implementation
    newData = func4(mapp['map'], p, sizeX, sizeY, pp, yp, xp, nx, ny) #func without @jit  ###
    ### 7.5x speedup
    newData = np.zeros((sizeX*sizeY*pp), np.float32)
    idx1 = np.arange(2*xp).reshape((2*xp, 1)) + np.arange(xp*yp, 3*xp*yp, 2*xp)
    idx2 = np.arange(xp).reshape((xp, 1)) + np.arange(0, xp*yp, xp)
    idx3 = np.arange(0, 2*xp*yp, 2*xp).reshape((yp, 1)) + np.arange(xp*yp, xp*yp+2*xp)

    for i in range(sizeY):
        for j in range(sizeX):
            pos1 = (i*sizeX + j) * p
            pos2 = (i*sizeX + j) * pp

            newData[pos2 : pos2+2*xp] = np.sum(mapp['map'][pos1 + idx1], axis=1) * ny
            newData[pos2+2*xp : pos2+3*xp] = np.sum(mapp['map'][pos1 + idx2], axis=1) * ny
            newData[pos2+3*xp : pos2+3*xp+yp] = np.sum(mapp['map'][pos1 + idx3], axis=1) * nx ###
    ### 120x speedup 
    newData = np.zeros((sizeX*sizeY*pp), np.float32)
    idx01 = (np.arange(0,sizeX*sizeY*pp,pp)[:,np.newaxis] + np.arange(2*xp)).reshape((sizeX*sizeY*2*xp))
    idx02 = (np.arange(0,sizeX*sizeY*pp,pp)[:,np.newaxis] + np.arange(2*xp,3*xp)).reshape((sizeX*sizeY*xp))
    idx03 = (np.arange(0,sizeX*sizeY*pp,pp)[:,np.newaxis] + np.arange(3*xp,3*xp+yp)).reshape((sizeX*sizeY*yp))

    idx11 = (np.arange(0,sizeX*sizeY*p,p)[:,np.newaxis] + np.arange(2*xp)).reshape((sizeX*sizeY*2*xp, 1)) + np.arange(xp*yp, 3*xp*yp, 2*xp)
    idx12 = (np.arange(0,sizeX*sizeY*p,p)[:,np.newaxis] + np.arange(xp)).reshape((sizeX*sizeY*xp, 1)) + np.arange(0, xp*yp, xp)
    idx13 = (np.arange(0,sizeX*sizeY*p,p)[:,np.newaxis] + np.arange(0, 2*xp*yp, 2*xp)).reshape((sizeX*sizeY*yp, 1)) + np.arange(xp*yp, xp*yp+2*xp)

    newData[idx01] = np.sum(mapp['map'][idx11], axis=1) * ny
    newData[idx02] = np.sum(mapp['map'][idx12], axis=1) * ny
    newData[idx03] = np.sum(mapp['map'][idx13], axis=1) * nx ###
    '''
    ### 190x speedup
    newData = func4(mapp['map'], p, int(sizeX), int(sizeY), pp, yp, xp, nx, ny)  # with @jit
    ###

    mapp['numFeatures'] = pp
    mapp['map'] = newData

    return mapp
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值