基于Python的性能优化(线程、协程、进程)

一、多线程

在CPU不密集、IO密集的任务下,多线程可以一定程度的提升运行效率。

import threading
import time
import requests

def fetch_url(url: str)->None:
    '''根据地址发起请求,获取响应
    - url: 请求地址'''
    response = requests.get(url)
    print(f"{url}: {response.status_code}")

def fetch_urls_sequential(urls:list)->None:
    start_time = time.time()
    for url in urls:
        fetch_url(url)
    end_time = time.time()
    print(f"使用单线程时间为: {end_time - start_time} 秒\n")

def fetch_urls_concurrent(urls:list)->None:
    start_time = time.time()
    threads = []
    for url in urls:
        thread = threading.Thread(target=fetch_url, args=(url,))
        threads.append(thread)
        thread.start()

    for thread in threads:
        thread.join()
    end_time = time.time()
    print(f"使用多线程时间为: {end_time - start_time} 秒")

if __name__ == "__main__":
    urls = ["http://www.example.com"]*10
    fetch_urls_sequential(urls)
    fetch_urls_concurrent(urls)

www.example.com: 200

www.example.com: 200

www.example.com: 200

www.example.com: 200

www.example.com: 200

www.example.com: 200

www.example.com: 200

www.example.com: 200

www.example.com: 200

www.example.com: 200

使用单线程时间为: 10.178432703018188 秒

www.example.com: 200

www.example.com: 200

www.example.com: 200

www.example.com: 200

www.example.com: 200

www.example.com: 200

www.example.com: 200

www.example.com: 200

www.example.com: 200

www.example.com: 200

使用多线程时间为: 0.5794060230255127 秒

可以看到在IO密集型任务时,排除极端情况,使用多线程可以很大的提升程序的性能。例如在这个例子中,响应时间就相差了8倍多。

虽然在Python中有GIL保护机制,但是依然需要注意线程安全。例如(共享数据、共享设备、非原子性操作等)。可以使用锁机制、信号机制、队列、管道等等。

二、协程

协程也叫轻量级线程,协程是一种在单一线程内实现并发编程的技术。它们允许函数在执行过程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值