我们在使用Spark Streaming处理流式数据时,业务需求需要更改数据结构,可以使用transform完成转化工作。
需求:输入:java scala java java,要求加上指定时间格式,
输出:
((java,20201224 17:30:10),3)
((scala,20201224 17:30:10),1)
import java.text.SimpleDateFormat
import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}
object SparkTransform {
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setAppName("SparkWindowDemo").setMaster("local[*]")
val streamingContext = new StreamingContext(conf,Seconds(2)) //批处理时间设置为2秒,也就是采集时间
val kafkaParams: Map[String, String] = Map(
(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "192.168.136.20:9092"),
(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer"),
(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer"),
(ConsumerConfig.GROUP_ID_CONFIG -> "kafkaGroup2")
)
val kafkaStream: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream(
streamingContext,
LocationStrategies.PreferConsistent,
ConsumerStrategies.Subscribe(Set("SparkKafkaDemo"), kafkaParams)
)
//业务需求需要更改数据结构是可以使用transform完成转化工作
val numStream: DStream[((String, String), Int)] = kafkaStream.transform((rdd, timestamp) => {
val format = new SimpleDateFormat("yyyyMMdd HH:mm:ss")
val time: String = format.format(timestamp.milliseconds)
val value: RDD[((String, String), Int)] = rdd.flatMap(x => x.value().split("\\s+"))
.map(x => ((x, time), 1))
.reduceByKey((x,y)=>x+y)
.sortBy(x=>x._2,ascending = false)
value
})
numStream.print()
streamingContext.start()
streamingContext.awaitTermination()
}
}
创建生产信息进行测试
kafka-console-producer.sh --topic SparkKafkaDemo --broker-list 192.168.136.20:9092
# 输入:
java scala java java
# 输出:
((java,20201224 17:30:10),3)
((scala,20201224 17:30:10),1)
此项目的pom依赖如下:
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.11</artifactId>
<version>2.0.0</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-streams</artifactId>
<version>2.0.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.4.5</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>2.4.5</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
<version>2.4.5</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.4.5</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>2.6.6</version>
</dependency>