机械学习将鸢尾花的特征值和特征向量进行组合

博客提及了鸢尾花数据,在信息技术领域,鸢尾花数据常被用于机器学习等相关研究,是重要的数据集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import pandas as pd
#第一步数据读取
data = pd.read_csv('IrisData.csv')
data.columns = ['sepal_len','sepal_wid','petal_len','petal_wid','classes']
#第二步提取特征
X = data[['sepal_len','sepal_wid','petal_len','petal_wid']].values
y = data['classes'].values

feature_names = ['sepal_len','sepal_wid','petal_len','petal_wid']
label_names = data['classes'].unique()

#第三步对每一个特征的样 品类别做直方图
for feature in range(len(feature_names)):
    plt.subplot(2,2,feature+1)
    for label in label_names:
        plt.hist(X[y==label,feature],bins=10,alpha=0.5,label=label)
    plt.legend(loc='best')
plt.show()
#第四步对特征进行标准化操作
from sklearn.preprocessing import StandardScaler

std_feature = StandardScaler().fit_transform(X)
 # 第五步 对特征去除均值,并构造协方差矩阵,也可以使用np. conv进行构造
mean_fea = std_feature.mean(axis=0)
cov_matrix = (std_feature - mean_fea).T.dot(std_feature-mean_fea)
#第六步使用np.1inalg.eig求出协方差矩阵的特征值和特征向量
eig_val,eig_vector = np.linalg.eig(cov_matrix)
#第七步:我们将特征值和特征向量进行组合
eig_paries = [(eig_val[j],eig_vector[:,j]) for j in range(len(eig_val))]

eig_vector_two = np.vstack([eig_paries[0][1],eig_paries[1][1]])
print(eig_vector_two)
trans_std_X = std_feature.dot(eig_vector_two.T)

在这里插入图片描述
鸢尾花数据

sepal length,sepal width,petal length,petal width,Species
5.1,3.5,1.4,0.2,Setosa
4.9,3,1.4,0.2,Setosa
4.7,3.2,1.3,0.2,Setosa
4.6,3.1,1.5,0.2,Setosa
5,3.6,1.4,0.2,Setosa
5.4,3.9,1.7,0.4,Setosa
4.6,3.4,1.4,0.3,Setosa
5,3.4,1.5,0.2,Setosa
4.4,2.9,1.4,0.2,Setosa
4.9,3.1,1.5,0.1,Setosa
5.4,3.7,1.5,0.2,Setosa
4.8,3.4,1.6,0.2,Setosa
4.8,3,1.4,0.1,Setosa
4.3,3,1.1,0.1,Setosa
5.8,4,1.2,0.2,Setosa
5.7,4.4,1.5,0.4,Setosa
5.4,3.9,1.3,0.4,Setosa
5.1,3.5,1.4,0.3,Setosa
5.7,3.8,1.7,0.3,Setosa
5.1,3.8,1.5,0.3,Setosa
5.4,3.4,1.7,0.2,Setosa
5.1,3.7,1.5,0.4,Setosa
4.6,3.6,1,0.2,Setosa
5.1,3.3,1.7,0.5,Setosa
4.8,3.4,1.9,0.2,Setosa
5,3,1.6,0.2,Setosa
5,3.4,1.6,0.4,Setosa
5.2,3.5,1.5,0.2,Setosa
5.2,3.4,1.4,0.2,Setosa
4.7,3.2,1.6,0.2,Setosa
4.8,3.1,1.6,0.2,Setosa
5.4,3.4,1.5,0.4,Setosa
5.2,4.1,1.5,0.1,Setosa
5.5,4.2,1.4,0.2,Setosa
4.9,3.1,1.5,0.2,Setosa
5,3.2,1.2,0.2,Setosa
5.5,3.5,1.3,0.2,Setosa
4.9,3.6,1.4,0.1,Setosa
4.4,3,1.3,0.2,Setosa
5.1,3.4,1.5,0.2,Setosa
5,3.5,1.3,0.3,Setosa
4.5,2.3,1.3,0.3,Setosa
4.4,3.2,1.3,0.2,Setosa
5,3.5,1.6,0.6,Setosa
5.1,3.8,1.9,0.4,Setosa
4.8,3,1.4,0.3,Setosa
5.1,3.8,1.6,0.2,Setosa
4.6,3.2,1.4,0.2,Setosa
5.3,3.7,1.5,0.2,Setosa
5,3.3,1.4,0.2,Setosa
7,3.2,4.7,1.4,Versicolour
6.4,3.2,4.5,1.5,Versicolour
6.9,3.1,4.9,1.5,Versicolour
5.5,2.3,4,1.3,Versicolour
6.5,2.8,4.6,1.5,Versicolour
5.7,2.8,4.5,1.3,Versicolour
6.3,3.3,4.7,1.6,Versicolour
4.9,2.4,3.3,1,Versicolour
6.6,2.9,4.6,1.3,Versicolour
5.2,2.7,3.9,1.4,Versicolour
5,2,3.5,1,Versicolour
5.9,3,4.2,1.5,Versicolour
6,2.2,4,1,Versicolour
6.1,2.9,4.7,1.4,Versicolour
5.6,2.9,3.6,1.3,Versicolour
6.7,3.1,4.4,1.4,Versicolour
5.6,3,4.5,1.5,Versicolour
5.8,2.7,4.1,1,Versicolour
6.2,2.2,4.5,1.5,Versicolour
5.6,2.5,3.9,1.1,Versicolour
5.9,3.2,4.8,1.8,Versicolour
6.1,2.8,4,1.3,Versicolour
6.3,2.5,4.9,1.5,Versicolour
6.1,2.8,4.7,1.2,Versicolour
6.4,2.9,4.3,1.3,Versicolour
6.6,3,4.4,1.4,Versicolour
6.8,2.8,4.8,1.4,Versicolour
6.7,3,5,1.7,Versicolour
6,2.9,4.5,1.5,Versicolour
5.7,2.6,3.5,1,Versicolour
5.5,2.4,3.8,1.1,Versicolour
5.5,2.4,3.7,1,Versicolour
5.8,2.7,3.9,1.2,Versicolour
6,2.7,5.1,1.6,Versicolour
5.4,3,4.5,1.5,Versicolour
6,3.4,4.5,1.6,Versicolour
6.7,3.1,4.7,1.5,Versicolour
6.3,2.3,4.4,1.3,Versicolour
5.6,3,4.1,1.3,Versicolour
5.5,2.5,4,1.3,Versicolour
5.5,2.6,4.4,1.2,Versicolour
6.1,3,4.6,1.4,Versicolour
5.8,2.6,4,1.2,Versicolour
5,2.3,3.3,1,Versicolour
5.6,2.7,4.2,1.3,Versicolour
5.7,3,4.2,1.2,Versicolour
5.7,2.9,4.2,1.3,Versicolour
6.2,2.9,4.3,1.3,Versicolour
5.1,2.5,3,1.1,Versicolour
5.7,2.8,4.1,1.3,Versicolour
6.3,3.3,6,2.5,Virginica
5.8,2.7,5.1,1.9,Virginica
7.1,3,5.9,2.1,Virginica
6.3,2.9,5.6,1.8,Virginica
6.5,3,5.8,2.2,Virginica
7.6,3,6.6,2.1,Virginica
4.9,2.5,4.5,1.7,Virginica
7.3,2.9,6.3,1.8,Virginica
6.7,2.5,5.8,1.8,Virginica
7.2,3.6,6.1,2.5,Virginica
6.5,3.2,5.1,2,Virginica
6.4,2.7,5.3,1.9,Virginica
6.8,3,5.5,2.1,Virginica
5.7,2.5,5,2,Virginica
5.8,2.8,5.1,2.4,Virginica
6.4,3.2,5.3,2.3,Virginica
6.5,3,5.5,1.8,Virginica
7.7,3.8,6.7,2.2,Virginica
7.7,2.6,6.9,2.3,Virginica
6,2.2,5,1.5,Virginica
6.9,3.2,5.7,2.3,Virginica
5.6,2.8,4.9,2,Virginica
7.7,2.8,6.7,2,Virginica
6.3,2.7,4.9,1.8,Virginica
6.7,3.3,5.7,2.1,Virginica
7.2,3.2,6,1.8,Virginica
6.2,2.8,4.8,1.8,Virginica
6.1,3,4.9,1.8,Virginica
6.4,2.8,5.6,2.1,Virginica
7.2,3,5.8,1.6,Virginica
7.4,2.8,6.1,1.9,Virginica
7.9,3.8,6.4,2,Virginica
6.4,2.8,5.6,2.2,Virginica
6.3,2.8,5.1,1.5,Virginica
6.1,2.6,5.6,1.4,Virginica
7.7,3,6.1,2.3,Virginica
6.3,3.4,5.6,2.4,Virginica
6.4,3.1,5.5,1.8,Virginica
6,3,4.8,1.8,Virginica
6.9,3.1,5.4,2.1,Virginica
6.7,3.1,5.6,2.4,Virginica
6.9,3.1,5.1,2.3,Virginica
5.8,2.7,5.1,1.9,Virginica
6.8,3.2,5.9,2.3,Virginica
6.7,3.3,5.7,2.5,Virginica
6.7,3,5.2,2.3,Virginica
6.3,2.5,5,1.9,Virginica
6.5,3,5.2,2,Virginica
6.2,3.4,5.4,2.3,Virginica
5.9,3,5.1,1.8,Virginica
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值