问题实现 pow(x, n) ,即计算 x 的 n 次幂函数(即,xn)。
思路:
将 n 进行二进制拆分,为 1 的位多乘一个 x 。
然后每次都将 x 平方,最后结果即 xn。
class Solution {
public:
double quickMul(double x, long long N) {
double ans = 1.0;
// 贡献的初始值为 x
double x_contribute = x;
// 在对 N 进行二进制拆分的同时计算答案
while (N > 0) {
if (N % 2 == 1) {
// 如果 N 二进制表示的最低位为 1,那么需要计入贡献
ans *= x_contribute;
}
// 将贡献不断地平方
x_contribute *= x_contribute;
// 舍弃 N 二进制表示的最低位,这样我们每次只要判断最低位即可
N /= 2;
}
return ans;
}
double myPow(double x, int n) {
long long N = n;
return N >= 0 ? quickMul(x, N) : 1.0 / quickMul(x, -N);
}
};
时间复杂度:O(log2(n))
空间复杂度:O(1)