【炼丹术革新:PyTorch中的高效模型优化策略】

如何提升 PyTorch「炼丹」速度?

最近,知名机器学习与 AI 研究者 Sebastian Raschka 的方法在不影响模型准确率的情况下,仅仅通过改变几行代码,将 BERT 优化时间从 22.63 分钟缩减到 3.15 分钟,训练速度足足提升了 7 倍。
在这里插入图片描述
作者更是表示,如果你有 8 个 GPU 可用,整个训练过程只需要 2 分钟,实现 11.5 倍的性能加速。

让 PyTorch 模型训练更快

首先是模型,作者采用 DistilBERT 模型进行研究,它是 BERT 的精简版,与 BERT 相比规模缩小了 40%,但性能几乎没有损失。其次是数据集,训练数据集为大型电影评论数据集 IMDB Large Movie Review,该数据集总共包含 50000 条电影评论。作者将使用下图中的 c 方法来预测数据集中的影评情绪。
在这里插入图片描述

基本任务交代清楚后,下面就是 PyTorch 的训练过程。为了让大家更好地理解这项任务,作者还贴心地介绍了一下热身练习,即如何在 IMDB 电影评论数据集上训练 DistilBERT 模型。如果你想自己运行代码,可以使用相关的 Python 库设置一个虚拟环境,如下所示:
在这里插入图片描述
相关软件的版本如下:4.26.1的transformer
在这里插入图片描述

现在省略掉枯燥的数据加载介绍,只需要了解本文将数据集划分为 35000 个训练示例、5000 个验证示例和 10000 个测试示例。

完整代码地址:


https://github.com/rasbt/faster-pytorch-blog/blob/main/1_pytorch-distilbert.py

正如上述代码所示,模型从第 2 轮到第 3 轮开始有一点过拟合,验证准确率从 92.89% 下降到了 92.09%。在模型运行了 22.63 分钟后进行微调,最终的测试准确率为 91.43%。

使用 Trainer 类

接下来是改进上述代码,改进部分主要是把 PyTorch 模型包装在 LightningModule 中,这样就可
以使用来自 Lightning 的 Trainer 类。

完整代码地址:https://github.com/rasbt/faster-pytorch-blog/blob/main/2_pytorch-with-trainer.py

上述代码建立了一个 LightningModule,它定义了如何执行训练、验证和测试。相比于前面给出的代码,主要变化是在第 5 部分(即 ### 5 Finetuning),即微调模型。与以前不同的是,微调部分在 LightningModel 类中包装了 PyTorch 模型,并使用 Trainer 类来拟合模型。

之前的代码显示验证准确率从第 2 轮到第 3 轮有所下降,但改进后的代码使用了 ModelCheckpoint 以加载最佳模型。在同一台机器上,这个模型在 23.09 分钟内达到了 92% 的测试准确率。
在这里插入图片描述
需要注意,如果禁用 checkpointing 并允许 PyTorch 以非确定性模式运行,本次运行最终将获得与普通 PyTorch 相同的运行时间(时间为 22.63 分而不是 23.09 分)。

自动混合精度训练

进一步,如果 GPU 支持混合精度训练,可以开启 GPU 以提高计算效率。作者使用自动混合精度训练,在 32 位和 16 位浮点之间切换而不会牺牲准确率。
在这里插入图片描述
在这一优化下,使用 Trainer 类,即能通过一行代码实现自动混合精度训练

上述操作可以将训练时间从 23.09 分钟缩短到 8.75 分钟,这几乎快了 3 倍。测试集的准确率为 92.2%,甚至比之前的 92.0% 还略有提高。

使用 Torch.Compile 静态图
最近 PyTorch 2.0 公告显示,PyTorch 团队引入了新的 toch.compile 函数。该函数可以通过生成优化的静态图来加速 PyTorch 代码执行,而不是使用动态图运行 PyTorch 代码。
在这里插入图片描述
由于 PyTorch 2.0 尚未正式发布,因而必须先要安装 torchtriton,并更新到 PyTorch 最新版本才能使用此功能。
在这里插入图片描述
然后通过添加这一行对代码进行修改:
在这里插入图片描述

在 4 块 GPU 上进行分布式数据并行
上文介绍了在单 GPU 上加速代码的混合精度训练,接下来介绍多 GPU 训练策略。下图总结了几种不同的多 GPU 训练技术。
在这里插入图片描述
想要实现分布式数据并行,可以通过 DistributedDataParallel 来实现,只需修改一行代码就能使用 Trainer。

经过这一步优化,在 4 个 A100 GPU 上,这段代码运行了 3.52 分钟就达到了 93.1% 的测试准确率。
在这里插入图片描述
DeepSpeed
最后,作者探索了在 Trainer 中使用深度学习优化库 DeepSpeed 以及多 GPU 策略的结果。首先必须安装 DeepSpeed 库:

在这里插入图片描述
接着只需更改一行代码即可启用该库:
在这里插入图片描述
这一波下来,用时 3.15 分钟就达到了 92.6% 的测试准确率。不过 PyTorch 也有 DeepSpeed 的替代方案:fully-sharded DataParallel,通过 strategy=“fsdp” 调用,最后花费 3.62 分钟完成。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值