此题写法可分为迭代和递归两种写法
1.递归法
首先明确判断二叉树对称是需要判断每个子树(而不是每个节点)的内侧,外侧是否相同,
引用自代码随想录的说明图
class Solution {
public:
bool compare(TreeNode* left,TreeNode* right)
{
//跟NULL有关的节点进行判断
if(left == NULL && right == NULL) return true;//均为空节点返回真
if(left != NULL && right == NULL) return false;//有一节点不为空则说明不对称返回假
if(left == NULL && right != NULL) return false;
if(left->val != right -> val) return false;//两个均不为空但是值不相同不对称返回假
//递归
bool outside = compare(left->left,right->right);
bool inside = compare(left->right,right->left);
bool judge = outside && inside;
return judge;
}
bool isSymmetric(TreeNode* root)
{
return compare(root->left,root->right);
}
};
2.迭代法
与递归法思路一致但是使用栈或队列来进行进一步判断
class Solution {
public:
bool isSymmetric(TreeNode* root)
{
queue<TreeNode*>queue1;
if(root->left == NULL && root->right == NULL)
{
return true;
}
if(root->left == NULL || root ->right == NULL)
{
return false;
}
queue1.push(root->left);
queue1.push(root->right);
while(!queue1.empty())
{
TreeNode* left = queue1.front();
queue1.pop();
TreeNode* right = queue1.front();
queue1.pop();
if(!left && !right) continue;
if(!left || !right || (left -> val != right ->val)) return false;
queue1.push(left->left);
queue1.push(right->right);
queue1.push(left->right);
queue1.push(right->left);
}
return true;
}
};