C++力扣题目 42--接雨水 84--柱状图中最大的矩形

42. 接雨水

力扣题目链接(opens new window)

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。

示例 1:

  • 输入:height = [0,1,0,2,1,0,1,3,2,1,2,1]
  • 输出:6
  • 解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。

示例 2:

  • 输入:height = [4,2,0,3,2,5]
  • 输出:9

#思路

接雨水问题在面试中还是常见题目的,有必要好好讲一讲。

本文深度讲解如下三种方法:

  • 暴力解法
  • 双指针优化
  • 单调栈

#暴力解法

本题暴力解法也是也是使用双指针。

首先要明确,要按照行来计算,还是按照列来计算。

按照行来计算如图: 

42.接雨水2

按照列来计算如图: 

42.接雨水1

一些同学在实现的时候,很容易一会按照行来计算一会按照列来计算,这样就会越写越乱。

我个人倾向于按照列来计算,比较容易理解,接下来看一下按照列如何计算。

首先,如果按照列来计算的话,宽度一定是1了,我们再把每一列的雨水的高度求出来就可以了。

可以看出每一列雨水的高度,取决于,该列 左侧最高的柱子和右侧最高的柱子中最矮的那个柱子的高度。

这句话可以有点绕,来举一个理解,例如求列4的雨水高度,如图:

42.接雨水3

列4 左侧最高的柱子是列3,高度为2(以下用lHeight表示)。

列4 右侧最高的柱子是列7,高度为3(以下用rHeight表示)。

列4 柱子的高度为1(以下用height表示)

那么列4的雨水高度为 列3和列7的高度最小值减列4高度,即: min(lHeight, rHeight) - height。

列4的雨水高度求出来了,宽度为1,相乘就是列4的雨水体积了。

此时求出了列4的雨水体积。

一样的方法,只要从头遍历一遍所有的列,然后求出每一列雨水的体积,相加之后就是总雨水的体积了。

首先从头遍历所有的列,并且要注意第一个柱子和最后一个柱子不接雨水,代码如下:

for (int i = 0; i < height.size(); i++) {
    // 第一个柱子和最后一个柱子不接雨水
    if (i == 0 || i == height.size() - 1) continue;
}

在for循环中求左右两边最高柱子,代码如下:

int rHeight = height[i]; // 记录右边柱子的最高高度
int lHeight = height[i]; // 记录左边柱子的最高高度
for (int r = i + 1; r < height.size(); r++) {
    if (height[r] > rHeight) rHeight = height[r];
}
for (int l = i - 1; l >= 0; l--) {
    if (height[l] > lHeight) lHeight = height[l];
}

最后,计算该列的雨水高度,代码如下:

int h = min(lHeight, rHeight) - height[i];
if (h > 0) sum += h; // 注意只有h大于零的时候,在统计到总和中

整体代码如下:

class Solution {
public:
    int trap(vector<int>& height) {
        int sum = 0;
        for (int i = 0; i < height.size(); i++) {
            // 第一个柱子和最后一个柱子不接雨水
            if (i == 0 || i == height.size() - 1) continue;

            int rHeight = height[i]; // 记录右边柱子的最高高度
            int lHeight = height[i]; // 记录左边柱子的最高高度
            for (int r = i + 1; r < height.size(); r++) {
                if (height[r] > rHeight) rHeight = height[r];
            }
            for (int l = i - 1; l >= 0; l--) {
                if (height[l] > lHeight) lHeight = height[l];
            }
            int h = min(lHeight, rHeight) - height[i];
            if (h > 0) sum += h;
        }
        return sum;
    }
};

因为每次遍历列的时候,还要向两边寻找最高的列,所以时间复杂度为O(n^2),空间复杂度为O(1)。

力扣后面修改了后台测试数据,所以以上暴力解法超时了。

#双指针优化

在暴力解法中,我们可以看到只要记录左边柱子的最高高度 和 右边柱子的最高高度,就可以计算当前位置的雨水面积,这就是通过列来计算。

当前列雨水面积:min(左边柱子的最高高度,记录右边柱子的最高高度) - 当前柱子高度。

为了得到

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值