说明:部分代码没有完全按照老师的写法
目录
1. 线性模型
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
import numpy as np
x_data = [1.0,2.0,3.0]
y_data = [2.0,4.0,6.0]
def forward(x):
return x * w
def loss(x,y):
y_pred = forward(x)
return (y_pred-y) * (y_pred-y)
w_list = []
mse_list = []
for w in np.arange(0.0,4.1,0.1):
print("w=",w)
loss_sum = 0
for x_val,y_val in zip(x_data,y_data):
y_pred_val = forward((x_val))
loss_val = loss(x_val,y_val)
loss_sum += loss_val
print("\t",x_val,y_val,y_pred_val,loss_val)
print("MSE:",loss_sum/len(x_data))
w_list.append(w)
mse_list.append(loss_sum/len(x_data))
plt.plot(w_list,mse_list)
plt.ylabel("loss")
plt.xlabel("w")
plt.show()
2. 梯度下降
梯度下降时可进行并行计算因此速度快,随机梯度下降最优值好但是不能进行并行计算,如何兼顾呢?Batch(Mini-Batch)
import matplotlib.pyplot as plt
import numpy as np
# --------------------------梯度下降------------------------------------
x_data = [1.0,2.0,3.0]
y_data = [2.0,4.0,6.0]
w = 1.0 #指定初始w
def forward(x):
return x * w
def cost(xs,ys):
cost = 0
for x,y in zip(xs,ys):
y_pred = forward(x)
cost += (y_pred-y)**2
return cost/len(xs)
def gradient(xs,ys):
grad = 0
for x, y in zip(xs,ys):
grad += 2*x*(x*w-y)
return grad/len(xs)
print("predict_before training",4,forward(4))
epoch_list = []
cost_list = []
for epoch in range(100):
cost_val = cost(x_data,y_data)
grad_val = gradient(x_data,y_data)
w -= 0.01 * grad_val
epoch_list.append(epoch)
cost_list.append(cost_val)
print("epoch:",epoch,"w:",w,"loss=",cost_val)
print("predict_after training", 4, forward(4))
plt.plot(epoch_list, cost_list)
plt.xlabel("epoch")
plt.ylabel("cost")
plt.show()
# --------------------------随机梯度下降------------------------------------
# x_data = [1.0,2.0,3.0]
# y_data = [2.0,4.0,6.0]
#
# w = 1.0 #指定初始w
#
# def forward(x):
# return x * w
#
# def loss(x,y):
# y_pred = forward(x)
# return (y_pred - y) **2
#
# def gradient(x,y):
# return 2*x*(x*w-y)
#
# print("predict_before training",4,forward(4))
#
# epoch_list = []
# loss_list = []
#
# for epoch in range(100):
# for x,y in zip(x_data,y_data):
# grad = gradient(x,y)
# l = loss(x,y)
# w -= 0.01 * grad
# epoch_list.append(epoch)
# loss_list.append(l)
#
# print("epoch:",epoch,"w=",w,"x=",x,"y=",y,"loss=",loss)
#
# print("predict_after training", 4, forward(4))
#
# plt.plot(epoch_list, loss_list)
# plt.xlabel("epoch")
# plt.ylabel("loss")
# plt.show()
3. 反向传播
Tensor 用于保存data :w,grad
import torch
x_data = [1.0,2.0,3.0]
y_data = [2.0,4.0,6.0]
w = torch.tensor([1.0])
w.requires_grad = True #需要对w计算梯度
def forward(x):
return w * x #w为tensor类型,相乘时x也会被转化为tensor,且结果也会保留grad
def loss(x,y):
y_pred = forward(x)
return (y_pred-y)**2
print("predict_before training",4,forward(4).item())
for epoch in range(100):
for x,y in zip(x_data,y_data):
l = loss(x,y)
l.backward() #反向传播求出grad且存在w中,计算图释放
print("x=",x,"y=",y,"grad",w.grad.item(),"w:",w) #可以分别打印w,w.data,w.grad.data加深理解
print("epoch:", epoch, "loss=", l.item()) # 使用item取出python标量
print("---------------------------------")
w.data = w.data-0.01*w.grad.data #注意使用.data
w.grad.data.zero_() #梯度清零
print("predict_after training",4,forward(4).item())
4. 用Pytorch实现线性回归
nn.MSELoss(size_average=False) 参数size_average即是否进行平均,当最后一个batch数量和前面的batch不同时设置为True。
import torch
from torch import nn
#data
x_data = torch.tensor([[1.0],[2.0],[3.0]])
y_data = torch.tensor([[2.0],[4.0],[6.0]])
#model
class LinearModel(nn.Module):
def __init__(self):
super(LinearModel,self).__init__()
self.linear = nn.Linear(1,1)
def forward(self,x):
y_pred = self.linear(x)
return y_pred
model = LinearModel()
#loss and optimizer
loss = nn.MSELoss(size_average=False) #size_average即是否平均 在最后一个batch不相同时设为TRUE
optimizer = torch.optim.SGD(model.parameters(),lr= 0.01)
#train
for epoch in range(100):
y_pred = model(x_data)
l = loss(y_pred,y_data)
print("epoch",epoch, "loss:",l)
optimizer.zero_grad() #梯度清零
l.backward() #反向传播
optimizer.step() #updata
print("w:",model.linear.weight.item(),"b:",model.linear.bias.item())
#test
x_test = torch.tensor([[4.0]])
y_test = model(x_test)
print("y_pred:",y_test.data)
5. 逻辑斯蒂回归
import torch
import torch.nn.functional as F
from torch import nn
#data
x_data = torch.Tensor([[1.0]