fasttext安装
分类模型
用验证集调参
1.pip install fasttext失败
重启后conda install fasttext失败
https://www.lfd.uci.edu/~gohlke/pythonlibs/#fasttext
找到自己python对应的版本,我的是python3.7,所以下载的是
fasttext-0.9.2-cp37-cp37m-win_amd64.whl
2.分类模型
import pandas as pd
from sklearn.metrics import f1_score
# 转换为FastText需要的格式
train_df = pd.read_csv('../input/train_set.csv', sep='\t', nrows=15000)
train_df['label_ft'] = '__label__' + train_df['label'].astype(str)
train_df[['text','label_ft']].iloc[:-5000].to_csv('train.csv', index=None, header=None, sep='\t')
import fasttext
model = fasttext.train_supervised('train.csv', lr=1.0, wordNgrams=2,
verbose=2, minCount=1, epoch=25, loss="hs")
val_pred = [model.predict(x)[0][0].split('__')[-1] for x in train_df.iloc[-5000:]['text']]
print(f1_score(train_df['label'].values[-5000:].astype(str), val_pred, average='macro'))
显示bad allocation,重启后可以运行。运行结果:
Read 9M words
Number of words: 5341
Number of labels: 14
Progress: 99.8% words/sec/thread: 436038 lr: 0.002195 avg.loss: 0.151275 ETA: 0h 0m 0s0.8226546557798213
3.十折交叉验证(未学完)