3-8tensor算术运算编程

本文详细介绍了使用PyTorch进行张量运算的基础操作,包括加减乘除、幂运算、指数、对数、平方根等,并展示了不同运算符的具体用法及原地操作的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import torch

##add

a = torch.rand(2, 3)
b = torch.rand(2, 3)

print(a)
print(b)

print(a + b)
print(a.add(b))
print(torch.add(a, b))
print(a)
print(a.add_(b))
print(a)

tensor([[0.8129, 0.6266, 0.2343],
        [0.4351, 0.9933, 0.0969]])
tensor([[0.4357, 0.0688, 0.9879],
        [0.5899, 0.2960, 0.2683]])
tensor([[1.2486, 0.6954, 1.2223],
        [1.0251, 1.2893, 0.3651]])
tensor([[1.2486, 0.6954, 1.2223],
        [1.0251, 1.2893, 0.3651]])
tensor([[1.2486, 0.6954, 1.2223],
        [1.0251, 1.2893, 0.3651]])
tensor([[0.8129, 0.6266, 0.2343],
        [0.4351, 0.9933, 0.0969]])
tensor([[1.2486, 0.6954, 1.2223],
        [1.0251, 1.2893, 0.3651]])
tensor([[1.2486, 0.6954, 1.2223],
        [1.0251, 1.2893, 0.3651]])
#sub
print("==== sub res ====")
print(a - b)
print(torch.sub(a, b))
print(a.sub(b))
print(a.sub_(b))
print(a)
==== sub res ====
tensor([[0.8129, 0.6266, 0.2343],
        [0.4351, 0.9933, 0.0969]])
tensor([[0.8129, 0.6266, 0.2343],
        [0.4351, 0.9933, 0.0969]])
tensor([[0.8129, 0.6266, 0.2343],
        [0.4351, 0.9933, 0.0969]])
tensor([[0.8129, 0.6266, 0.2343],
        [0.4351, 0.9933, 0.0969]])
tensor([[0.8129, 0.6266, 0.2343],
        [0.4351, 0.9933, 0.0969]])
## mul
print("===== mul ====")
print(a * b)
print(torch.mul(a, b))
print(a.mul(b))
print(a)
print(a.mul_(b))
print(a)

===== mul ====
tensor([[0.3542, 0.0431, 0.2315],
        [0.2567, 0.2940, 0.0260]])
tensor([[0.3542, 0.0431, 0.2315],
        [0.2567, 0.2940, 0.0260]])
tensor([[0.3542, 0.0431, 0.2315],
        [0.2567, 0.2940, 0.0260]])
tensor([[0.8129, 0.6266, 0.2343],
        [0.4351, 0.9933, 0.0969]])
tensor([[0.3542, 0.0431, 0.2315],
        [0.2567, 0.2940, 0.0260]])
tensor([[0.3542, 0.0431, 0.2315],
        [0.2567, 0.2940, 0.0260]])
# div
print("=== div ===")
print(a/b)
print(torch.div(a, b))
print(a.div(b))
print(a.div_(b))
print(a)

=== div ===
tensor([[0.8129, 0.6266, 0.2343],
        [0.4351, 0.9933, 0.0969]])
tensor([[0.8129, 0.6266, 0.2343],
        [0.4351, 0.9933, 0.0969]])
tensor([[0.8129, 0.6266, 0.2343],
        [0.4351, 0.9933, 0.0969]])
tensor([[0.8129, 0.6266, 0.2343],
        [0.4351, 0.9933, 0.0969]])
tensor([[0.8129, 0.6266, 0.2343],
        [0.4351, 0.9933, 0.0969]])
## mul乘法
print("===== mul ====")
print(a * b)
print(torch.mul(a, b))
print(a.mul(b))
print(a)
print(a.mul_(b))
print(a)

###matmul矩阵乘法,矩阵乘法无原地操作

a = torch.ones(2, 1)
b = torch.ones(1, 2)
print(a @ b)   #注意@
print(a.matmul(b))
print(torch.matmul(a, b))
print(torch.mm(a, b))
print(a.mm(b))
tensor([[1., 1.],
        [1., 1.]])
tensor([[1., 1.],
        [1., 1.]])
tensor([[1., 1.],
        [1., 1.]])
tensor([[1., 1.],
        [1., 1.]])
tensor([[1., 1.],
        [1., 1.]])
#高维tensor

a = torch.ones(1, 2, 3, 4)   #最后俩维度矩阵运算
b = torch.ones(1, 2, 4, 5)
print(a.matmul(b))
print(a.matmul(b).shape)

tensor([[[[4., 4., 4., 4., 4.],
          [4., 4., 4., 4., 4.],
          [4., 4., 4., 4., 4.]],

         [[4., 4., 4., 4., 4.],
          [4., 4., 4., 4., 4.],
          [4., 4., 4., 4., 4.]]]])
torch.Size([1, 2, 3, 5])
##pow
a = torch.tensor([1, 2])
print(torch.pow(a, 3))
print(a.pow(3))
print(a**3)
print(a.pow_(3))
print(a)
tensor([1, 8])
tensor([1, 8])
tensor([1, 8])
tensor([1, 8])
tensor([1, 8])
#exp
a = torch.tensor([1, 2],#类型不能long
                 dtype=torch.float32)
print(a.type())
print(torch.exp(a))
print(torch.exp_(a)) #已修改
print(a.exp())
print(a.exp_())
torch.FloatTensor
tensor([2.7183, 7.3891])
tensor([2.7183, 7.3891])
tensor([  15.1543, 1618.1781])
tensor([  15.1543, 1618.1781])
##log
a = torch.tensor([10, 2],  #类型不能long
                 dtype=torch.float32)
print(torch.log(a))
print(torch.log_(a))
print(a.log())
print(a.log_())

tensor([2.3026, 0.6931])
tensor([2.3026, 0.6931])
tensor([ 0.8340, -0.3665])
tensor([ 0.8340, -0.3665])
##sqrt
a = torch.tensor([10, 2],
                 dtype=torch.float32)
print(torch.sqrt(a))
print(torch.sqrt_(a))

print(a.sqrt())
print(a.sqrt_())






tensor([3.1623, 1.4142])
tensor([3.1623, 1.4142])
tensor([1.7783, 1.1892])
tensor([1.7783, 1.1892])


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值