import tensorflow as tf
import keras
from keras import layers
import numpy as np
import os
import shutil
base_dir = './dataset/cat_dog'
train_dir = base_dir + '/train'
train_dog_dir = train_dir + '/dog'
train_cat_dir = train_dir + '/cat'
test_dir = base_dir + '/test'
test_dog_dir = test_dir + '/dog'
test_cat_dir = test_dir + '/cat'
dc_dir = './dataset/dc/train'
if not os.path.exists(base_dir):
os.mkdir(base_dir)
os.mkdir(train_dir)
os.mkdir(train_dog_dir)
os.mkdir(train_cat_dir)
os.mkdir(test_dir)
os.mkdir(test_dog_dir)
os.mkdir(test_cat_dir)
fnames = ['cat.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
src = os.path.join(dc_dir, fname)
dst = os.path.join(train_cat_dir, fname)
shutil.copyfile(src, dst)
fnames = ['cat.{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames:
src = os.path.join(dc_dir, fname)
dst = os.path.join(test_cat_dir, fname)
shutil.copyfile(src, dst)
fnames = ['dog.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
src = os.path.join(dc_dir, fname)
dst = os.path.join(train_dog_dir, fname)
shutil.copyfile(src, dst)
fnames = ['dog.{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames