6.5 使用 VGG 预训练网络实现猫狗分类

本文详细介绍了如何运用深度学习中的VGG预训练网络进行猫狗分类任务。通过在预训练的卷积基上添加全连接层和输出层,然后只训练新增加层的权重,经过模型编译和训练,实现了迁移学习的目标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一)代码实现迁移学习

import tensorflow as tf
import keras
from keras import layers
import numpy as np
import os
import shutil


base_dir = './dataset/cat_dog'
train_dir = base_dir + '/train'
train_dog_dir = train_dir + '/dog'
train_cat_dir = train_dir + '/cat'
test_dir = base_dir + '/test'
test_dog_dir = test_dir + '/dog'
test_cat_dir = test_dir + '/cat'
dc_dir = './dataset/dc/train' 



if not os.path.exists(base_dir):

    os.mkdir(base_dir)

    os.mkdir(train_dir)
    os.mkdir(train_dog_dir)
    os.mkdir(train_cat_dir)
    os.mkdir(test_dir)
    os.mkdir(test_dog_dir)
    os.mkdir(test_cat_dir)

    fnames = ['cat.{}.jpg'.format(i) for i in range(1000)] 
    for fname in fnames:
        src = os.path.join(dc_dir, fname)
        dst = os.path.join(train_cat_dir, fname)
        shutil.copyfile(src, dst)

    fnames = ['cat.{}.jpg'.format(i) for i in range(1000, 1500)] 
    for fname in fnames:
        src = os.path.join(dc_dir, fname)
        dst = os.path.join(test_cat_dir, fname)
        shutil.copyfile(src, dst)

    fnames = ['dog.{}.jpg'.format(i) for i in range(1000)] 
    for fname in fnames:
        src = os.path.join(dc_dir, fname)
        dst = os.path.join(train_dog_dir, fname)
        shutil.copyfile(src, dst)

    fnames = ['dog.{}.jpg'.format(i) for i in range(1000, 1500)] 
    for fname in fnames
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值