鸢尾花种类预测—流程实现

1.8 案例:鸢尾花种类预测—流程实现

学习目标

  • 目标
    • 知道KNeighborsClassifier的用法

1 再识K-近邻算法API

  • sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm='auto')
    • n_neighbors:
      • int,可选(默认= 5),k_neighbors查询默认使用的邻居数
    • algorithm:{‘auto’,‘ball_tree’,‘kd_tree’,‘brute’}
      • 快速k近邻搜索算法,默认参数为auto,可以理解为算法自己决定合适的搜索算法。除此之外,用户也可以自己指定搜索算法ball_tree、kd_tree、brute方法进行搜索,
        • brute是蛮力搜索,也就是线性扫描,当训练集很大时,计算非常耗时。
        • kd_tree,构造kd树存储数据以便对其进行快速检索的树形数据结构,kd树也就是数据结构中的二叉树。以中值切分构造的树,每个结点是一个超矩形,在维数小于20时效率高。
        • ball tree是为了克服kd树高维失效而发明的,其构造过程是以质心C和半径r分割样本空间,每个节点是一个超球体。

2 案例:鸢尾花种类预测

2.1 数据集介绍

Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。关于数据集的具体介绍:

在这里插入图片描述

2.2 步骤分析

  • 1.获取数据集
  • 2.数据基本处理
  • 3.特征工程
  • 4.机器学习(模型训练)
  • 5.模型评估

2.3 代码过程

  • 导入模块
  • 先从sklearn当中获取数据集,然后进行数据集的分割
  • 进行数据标准化
    • 特征值的标准化
  • 模型进行训练预测

3 案例小结

在本案例中,具体完成内容有:
  • 使用可视化加载和探索数据,以确定特征是否能将不同类别分开。
  • 通过标准化数字特征并随机抽样到训练集和测试集来准备数据。
  • 通过统计学,精确度度量进行构建和评估机器学习模型。

同学之间讨论刚才完成的机器学习代码,并且确保在自己的电脑运行成功

4 总结

  • KNeighborsClassifier的使用【知道】
    • sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm='auto')
      • algorithm(auto,ball_tree, kd_tree, brute) -- 选择什么样的算法进行计算
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Fishel-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值