1. 位置编码
model.py
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import TransformerEncoder, TransformerEncoderLayer, MultiheadAttention
import math
UNMASKED_LABEL = -100
class PositionalEncoding(nn.Module):
def __init__(self, trial_length, d_model, dropout):
super().__init__()
self.dropout = nn.Dropout(dropout)
pe = torch.zeros(trial_length, d_model)
position = torch.arange(0, trial_length, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
if d_model % 2 == 0:
pe[:, 1::2] = torch.cos(position * div_term)
else:
pe[:, 1::2] = torch.cos(position * div_term[:-1])
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
1.2 EncoderLayer
model.py
核心编码层,加入了将空间注意力编码
class STNTransformerEncoderLayer(TransformerEncoderLayer):
def __init__(self, d_model, d_model_s, num_heads=2, dim_feedforward=128, dropout=0.1,
activation='relu'