Simple-STNDT使用Transformer进行Spike信号的表征学习(二)模型结构

1. 位置编码

model.py

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import TransformerEncoder, TransformerEncoderLayer, MultiheadAttention
import math
UNMASKED_LABEL = -100

class PositionalEncoding(nn.Module):
    def __init__(self, trial_length, d_model, dropout):
        super().__init__()
        self.dropout = nn.Dropout(dropout)
        pe = torch.zeros(trial_length, d_model)
        position = torch.arange(0, trial_length, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        if d_model % 2 == 0:
            pe[:, 1::2] = torch.cos(position * div_term)
        else:
            pe[:, 1::2] = torch.cos(position * div_term[:-1])
        pe = pe.unsqueeze(0).transpose(0, 1)
        self.register_buffer('pe', pe)

    def forward(self, x):
        x = x + self.pe[:x.size(0), :]
        return self.dropout(x)

1.2 EncoderLayer

model.py
核心编码层,加入了将空间注意力编码

class STNTransformerEncoderLayer(TransformerEncoderLayer):
    def __init__(self, d_model, d_model_s, num_heads=2,  dim_feedforward=128, dropout=0.1, 
                 activation='relu'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值