数据分析第二讲:NumPy的应用入门(一)

NumPy的应用(一)

Numpy 是一个开源的 Python 科学计算库,用于快速处理任意维度的数组。Numpy 支持常见的数组和矩阵操作,对于同样的数值计算任务,使用 NumPy 不仅代码要简洁的多,而且 NumPy 在性能上也远远优于原生 Python,至少是一到两个数量级的差距,而且数据量越大,NumPy 的优势就越明显。

NumPy 最为核心的数据类型是ndarray,使用ndarray可以处理一维、二维和多维数组,该对象相当于是一个快速而灵活的大数据容器。NumPy 底层代码使用 C 语言编写,解决了 GIL 的限制,ndarray在存取数据的时候,数据与数据的地址都是连续的,这确保了可以进行高效率的批量操作,性能上远远优于 Python 中的list;另一方面ndarray对象提供了更多的方法来处理数据,尤其获取数据统计特征的方法,这些方法也是 Python 原生的list没有的。

准备工作

  1. 启动 JupyterLab

    jupyter lab
    

    提示:在启动 JupyterLab 之前,建议先安装好数据分析相关依赖项,包括之前提到的三大神器以及相关依赖项。如果使用 Anaconda,则无需单独安装,可以通过 Anaconda 的 Navigator 来启动。

  2. 导入

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    

    说明:如果已经启动了 JupyterLab 但尚未安装相关依赖库,例如尚未安装numpy,可以在单元格中输入%pip install numpy并运行该单元格来安装 NumPy。当然,我们也可以在单元格中输入%pip install numpy pandas matplotlib把 Python 数据分析三个核心的三方库都安装上。注意上面的代码,我们不仅导入了 NumPy,还将 pandas 和 matplotlib 库一并导入了。

创建数组对象

创建ndarray对象有很多种方法,下面我们介绍一些常用的方法。

方法一:使用array函数,通过list创建数组对象

代码:

array1 = np.array([1, 2, 3, 4, 5])
array1

输出:

array([1, 2, 3, 4, 5])

代码:

array2 = np.array([[1, 2, 3], [4, 5, 6]])
array2

输出:

array([[1, 2, 3],
       [4, 5, 6]])

方法二:使用arange函数,指定取值范围和跨度创建数组对象

代码:

array3 = np.arange(0, 20, 2)
array3

输出:

array([ 0,  2,  4,  6,  8, 10, 12, 14, 16, 18])

方法三:使用linspace函数,用指定范围和元素个数创建数组对象,生成等差数列

代码:

array4 = np.linspace(-1, 1, 11)
array4

输出:

array([-1. , -0.8, -0.6, -0.4, -0.2,  0. ,  0.2,  0.4,  0.6,  0.8,  1. ])

方法四:使用logspace函数,生成等比数列

代码:

array5 = np.logspace(1, 10, num=10, base=2)
array5

注意:等比数列的起始值是 2 1 2^1 21,等比数列的终止值是 2 10 2^{10} 210

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weixin_46863529

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值