Java并发包JUC——ConcurrentHashMap

1.1分段锁机制

Hashtable之所以效率低下主要是因为其实现使用了synchronized关键字对put等操作进行加锁,而synchronized关键字加锁是对整个对象进行加锁,也就是说在进行put等修改Hash表的操作时,锁住了整个Hash表,从而使得其表现的效率低下。
因此,在JDK1.5~1.7版本,Java使用了分段锁机制实现ConcurrentHashMap.简而言之,ConcurrentHashMap在对象中保存了一个Segment数组,即将整个Hash表划分为多个分段;而每个Segment元素,即每个分段则类似于一个Hashtable;这样,在执行put操作时首先根据hash算法定位到元素属于哪个Segment,然后对该Segment加锁即可。因此,ConcurrentHashMap在多线程并发编程中可是实现多线程put操作。
本文将详细分析JDK1.7版本中ConcurrentHashMap的实现原理。
在这里插入图片描述
由图可知,在ConcurrentHashMap中,定义了一个Segment<K, V>[]数组来将一个大的Hash表差分实现分段存储,从而实现分段加锁;而一个Segment元素则就相当于一个完整的HashMap结构,其包含了一个HashEntry(HashMap是Node数组)数组,用来存储Key/Value对。Segment继承了ReetrantLock,表示Segment是一个可重入锁,因此ConcurrentHashMap通过可重入锁对每个分段进行加锁。

1.2 ConcurrentHashMap的初始化

JDK1.7的ConcurrentHashMap的初始化主要分为两个部分:一是初始化ConcurrentHashMap,即初始化segments数组、segmentShift段偏移量和segmentMask段掩码等;然后则是初始化每个segment分段。接下来,我们将分别介绍这两部分初始化。
ConcurrentHashMap包含多个构造函数,而所有的构造函数最终都调用了如下的构造函数:

    public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (concurrencyLevel > MAX_SEGMENTS)
            concurrencyLevel = MAX_SEGMENTS;
        // Find power-of-two sizes best matching arguments
        int sshift = 0;
        int ssize = 1;
        while (ssize < concurrencyLevel) {
            ++sshift;
            ssize <<= 1;
        }
        this.segmentShift = 32 - sshift;
        this.segmentMask = ssize - 1;
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        int c = initialCapacity / ssize;
        if (c * ssize < initialCapacity)
            ++c;
        int cap = MIN_SEGMENT_TABLE_CAPACITY;
        while (cap < c)
            cap <<= 1;
        // create segments and segments[0]
        Segment<K,V> s0 =
            new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                             (HashEntry<K,V>[])new HashEntry[cap]);
        Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
        this.segments = ss;
    }

由代码可知,该构造函数需要传入三个参数:initialCapacity、loadFactor、concurrencyLevel,其中,concurrencyLevel主要用来初始化segments、segmentShift和segmentMask等;而initialCapacity和loadFactor则主要用来初始化每个Segment分段。

1.2.1 初始化ConcurrentHashMap

根据ConcurrentHashMap的构造方法可知,在初始化时创建了两个中间变量ssize和sshift,它们都是通过concurrencyLevel计算得到的。其中ssize表示了segments数组的长度,为了能通过按位与的散列算法来定位segments数组的索引,必须保证segments数组的长度是2的N次方,所以在初始化时通过循环计算出一个大于或等于concurrencyLevel的最小的2的N次方值来作为数组的长度;而sshift表示了计算ssize时进行移位操作的次数。
SegmentShift用于定位参与散列运算的位数,其等于32减去sshift,使用32是因为ConcurrentHashMap的hash()方法返回的最大数是32位的;segmentMask是散列运算的掩码,等于ssize减去1,所以掩码的二进制各位都为1.

1.2.2 初始化Segment分段

ConcurrentHashMap通过initialCapacity和loadFactor来初始化每个Segment. 在初始化Segment时,也定义了一个中间变量cap,其等于initialCapacity除以ssize的倍数c,如果c大于1,则取大于等于c的2的N次方,cap表示Segment中HashEntry数组的长度;loadFactor表示了Segment的加载因子,通过cap*loadFactor获得每个Segment的阈值threshold.
默认情况下,initialCapacity等于16,loadFactor等于0.75,concurrencyLevel等于16:默认最高可以16个线程同时访问.

1.3定位Segment

由于采用了Segment分段锁机制实现一个高效的同步,那么首先则需要通过hash散列算法计算key的hash值,从而定位其所在的Segment. 因此,首先需要了解ConcurrentHashMap中hash()函数的实现。

    private int hash(Object k) {
        int h = hashSeed;
 
        if ((0 != h) && (k instanceof String)) {
            return sun.misc.Hashing.stringHash32((String) k);
        }
 
        h ^= k.hashCode();
 
        // Spread bits to regularize both segment and index locations,
        // using variant of single-word Wang/Jenkins hash.
        h += (h <<  15) ^ 0xffffcd7d;
        h ^= (h >>> 10);
        h += (h <<   3);
        h ^= (h >>>  6);
        h += (h <<   2) + (h << 14);
        return h ^ (h >>> 16);
    }

通过hash()函数可知,首先通过计算一个随机的hashSeed减少String类型的key值的hash冲突;然后利用Wang/Jenkins hash算法对key的hash值进行再hash计算。通过这两种方式都是为了减少散列冲突,从而提高效率。因为如果散列的质量太差,元素分布不均,那么使用Segment分段加锁也就没有意义了。

    private Segment<K,V> segmentForHash(int h) {
        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
        return (Segment<K,V>) UNSAFE.getObjectVolatile(segments, u);
    }

接下来,ConcurrentHashMap通过上述定位函数则可以定位到key所在的Segment分段。

1.4ConcurrentHashMap的操作

1.4.1 get

JDK1.7的ConcurrentHashMap的get操作是不加锁的,因为在每个Segment中定义的HashEntry数组和在每个HashEntry中定义的value和next HashEntry节点都是volatile类型的,volatile类型的变量可以保证其在多线程之间的可见性,因此可以被多个线程同时读,从而不用加锁。而其get操作步骤也比较简单,定位Segment –> 定位HashEntry –> 通过getObjectVolatile()方法获取指定偏移量上的HashEntry –> 通过循环遍历链表获取对应值。

1.4.2 put

ConcurrentHashMap的put方法就要比get方法复杂的多,其实现源码如下:

    public V put(K key, V value) {
        Segment<K,V> s;
        if (value == null)
            throw new NullPointerException();
        int hash = hash(key);
        int j = (hash >>> segmentShift) & segmentMask;
        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
            s = ensureSegment(j);
        return s.put(key, hash, value, false);
    }

2. ConcurrentHashMap的实现——JDK8版本

在JDK1.7之前,ConcurrentHashMap是通过分段锁机制来实现的,所以其最大并发度受Segment的个数限制。因此,在JDK1.8中,ConcurrentHashMap的实现原理摒弃了这种设计,而是选择了与HashMap类似的数组+链表+红黑树的方式实现,而加锁则采用CAS和synchronized实现。
在这里插入图片描述
JDK1.8的ConcurrentHashMap数据结构比JDK1.7之前的要简单的多,其使用的是HashMap一样的数据结构:数组+链表+红黑树。ConcurrentHashMap中包含一个table数组,其类型是一个Node数组;而Node是一个继承自Map.Entry<K, V>的链表,而当这个链表结构中的数据大于8,则将数据结构升级为TreeBin类型的红黑树结构。另外,JDK1.8中的ConcurrentHashMap中还包含一个重要属性sizeCtl,其是一个控制标识符,不同的值代表不同的意思:其为0时,表示hash表还未初始化,而为正数时这个数值表示初始化或下一次扩容的大小,相当于一个阈值;即如果hash表的实际大小>=sizeCtl,则进行扩容,默认情况下其是当前ConcurrentHashMap容量的0.75倍;而如果sizeCtl为-1,表示正在进行初始化操作;而为-N时,则表示有N-1个线程正在进行扩容。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值