深度学习基础--多层感知机(MLP)

深度学习基础–多层感知机(MLP)

最近在阅读一本书籍–Dive-into-DL-Pytorch(动手学深度学习),链接:https://github.com/newmonkey/Dive-into-DL-PyTorch,自身觉得受益匪浅,在此记录下自己的学习历程。

本篇主要记录关于多层感知机(multilayer perceptron, MLP)的知识。多层感知机是在单层神经网络的基础上引入一个或多个隐藏层。

以单层神经网路SOFTMAX回归为例子。给定一个小批量样本X,假设输出层的softmax回归的权重和偏差参数分别为Wo和bo,输出层的输出记为O,则softmax回归的计算表达式为:
在这里插入图片描述
在上述的SOFTMAX回归中,我们在输入层与输出层间引入一个隐藏层,形成多层感知机。假设隐藏层的输出记为H,隐藏层的权重参数和偏差参数分别为Wh和bh,∅表示激活函数。则这个多层感知机的计算表达式为:
在这里插入图片描述
上述式子联立可得:
在这里插入图片描述

利用pytorch实现上述的多层感知机:

0 引入相关的包
import torch
from torch import nn
from torch.nn import init
import numpy as np
import torchvision
import torchvision.transforms as transforms
1 获取数据集
采用的是Fashion-MNIST数据集。
def load_data_fashion_mnist(batch_size, root='~/Datasets/FashionMNIST'):
    transform = transforms.ToTensor()
    mnist_train = torchvision.datasets.FashionMNIST(root=root, train=True, download=True, transform=transform)
    mnist_test = torchvision.datasets.FashionMNIST(root=root, train=False, download=True, transform=transform)
    if sys.platform.startswith('win'):
        num_workers = 0  # 0表示不用额外的进
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值