(Python积累)pandas中cut的参数

该博客详细介绍了Python中用于数据离散化的`cut`函数,它能够将数值型数据分段并转换为类别。参数包括输入数组`x`、分组数`bins`、是否包含右边界`right`、自定义标签`labels`等。通过设置不同参数,可以实现等宽或自定义宽度的分组,并控制是否包含最低值。此外,还讨论了如何处理重复的分组边界和返回分组边界的选择。该函数在数据分析和特征工程中非常实用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

def cut(
    x,
    bins,
    right: bool = True,
    labels=None,
    retbins: bool = False,
    precision: int = 3,
    include_lowest: bool = False,
    duplicates: str = "raise",
    ordered: bool = True,
):
    """
    Bin values into discrete intervals.

    Use `cut` when you need to segment and sort data values into bins. This
    function is also useful for going from a continuous variable to a
    categorical variable. For example, `cut` could convert ages to groups of
    age ranges. Supports binning into an equal number of bins, or a
    pre-specified array of bins.

    Parameters
    ----------
    x : array-like
        The input array to be binned. Must be 1-dimensional.
    bins : int, sequence of scalars, or IntervalIndex
        The criteria to bin by.

        * int : Defines the number of equal-width bins in the range of `x`. The
          range of `x` is extended by .1% on each side to include the minimum
          and maximum values of `x`.
        * sequence of scalars : Defines the bin edges allowing for non-uniform
          width. No extension of the range of `x` is done.
        * IntervalIndex : Defines the exact bins to be used. Note that
          IntervalIndex for `bins` must be non-overlapping.

    right : bool, default True
        Indicates whether `bins` includes the rightmost edge or not. If
        ``right == True`` (the default), then the `bins` ``[1, 2, 3, 4]``
        indicate (1,2], (2,3], (3,4]. This argument is ignored when
        `bins` is an IntervalIndex.
    labels : array or False, default None
        Specifies the labels for the returned bins. Must be the same length as
        the resulting bins. If False, returns only integer indicators of the
        bins. This affects the type of the output container (see below).
        This argument is ignored when `bins` is an IntervalIndex. If True,
        raises an error. When `ordered=False`, labels must be provided.
    retbins : bool, default False
        Whether to return the bins or not. Useful when bins is provided
        as a scalar.
    precision : int, default 3
        The precision at which to store and display the bins labels.
    include_lowest : bool, default False
        Whether the first interval should be left-inclusive or not.
    duplicates : {default 'raise', 'drop'}, optional
        If bin edges are not unique, raise ValueError or drop non-uniques.
    ordered : bool, default True
        Whether the labels are ordered or not. Applies to returned types
        Categorical and Series (with Categorical dtype). If True,
        the resulting categorical will be ordered. If False, the resulting
        categorical will be unordered (labels must be provided).

主要功能:将x数组离散化成bins个分组

def cut(    x,    bins,    right: bool = True,    labels=None,    retbins: bool = False,    precision: int = 3,    include_lowest: bool = False,    duplicates: str = "raise",    ordered: bool = True,):

x:要操作的数组对象

bins:要分成的组块的数目

right:bool=True:分组时右侧是否闭合,是否包含右边边界的值

labels=None:分组情况的标签。例:labels=range(0,4)

precision:小数点的位数,默认为3

include_lowest:是否包括最低值,即左侧是否闭合

duplicates:是否允许重复区间,raise可重复,drop不允许重复

ordered:是否为有序的,默认是TRUE即为有序

Pythonpandas库中,cut()方法用于将连续型数据分成不同的离散区间或箱子。它可以根据指定的切割点将数据进行分组,并返回一个新的Categorical对象。 cut()方法的语法格式如下: ``` pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False) ``` 其中,参数的含义如下: - x:要进行切割的连续型数据,可以是一个Series或数组。 - bins:切割点,可以是一个整数(表示要划分的区间数量)或一个列表/数组(表示每个区间的边界值)。 - right:指定区间是否包含右边界,默认为True,即右开区间。 - labels:用于替换每个区间的标签,默认为None,即使用整数表示区间。 - retbins:是否返回切割点(bins),默认为False。 - precision:指定切割点的小数精度,默认为3。 - include_lowest:是否将最小值包括在第一个区间中,默认为False。 例如,我们可以使用cut()方法将一列年龄数据分成不同的年龄段: ```python import pandas as pd ages = [18, 25, 30, 35, 40, 45, 50, 55, 60, 65] bins = [20, 40, 60] categories = pd.cut(ages, bins) print(categories) ``` 输出结果为: ``` [(20, 40], (20, 40], (20, 40], (20, 40], (20, 40], (40, 60], (40, 60], (40, 60], (40, 60], (60, 80]] Categories (2, interval[int64]): [(20, 40] < (40, 60]] ``` 在上述例子中,我们创建了一个包含年龄数据的列表ages,并使用bins参数指定了切割点。然后,我们调用cut()方法将年龄数据分成两个区间:20到40和40到60,并将结果赋给categories。最后,我们打印出了categories。 cut()方法将连续型数据离散化成了指定的区间,并返回一个Categorical对象,可以用于后续的分析和可视化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值