深势科技创始人&首席科学家张林峰:AI+分子模拟,赋能药物发现新源头

深势科技创始人张林峰在阿里云峰会上分享如何利用AI和分子模拟技术,突破药物发现的瓶颈。AI能克服维数灾难,提高模拟准确性,结合GPU算力,加速药物研发过程,如通过Uni-Fold和RiD方法优化蛋白结构预测和别构位点发现,以及通过Uni-FEP计算药物变化的结合自由能。AI+算力的结合使得上云成为行业趋势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要:2022 年 8 月 5 日,2022 阿里云生命科学与智能计算峰会在北京望京昆泰酒店举行,深势科技创始人 &首席科学家、北京科学智能研究院研究员张林峰,带来了题为《AI+分子模拟,赋能药物发现新源头》的分享,以下是他的演讲内容整理,供大家阅览:

深势科技创始人 &首席科学家、北京科学智能研究院研究员  张林峰

01 当 AI 能力深入流向千行百业

AI 带给我们的能力,不只是处理大规模的生活数据,也包括科学数据,其本质是表达高维复杂的函数,能够让我们更好地利用科学规律,利用量子力学方程、分子力学方程,能够更高效、更准确地求解物理方程做模拟。比如在药物或材料的设计过程中,在制造飞机、大坝、桥梁等大型工程的过程中,可以先进行计算模拟,在计算机仿真过程中确保没问题再真正进行实验和实体的设计。

而这一系列新技术的突破,将为微观世界工业化的设计和生产带来新的突破。这样一个底层范式驱动的一系列微观世界计算与设计新工具,将为药物研发、材料研发以及很多行业的方方面面带来更多不同。

当今计算生物或药物设计、材料设计、化工设计等场景中,往往期望用计算模拟解决一些问题,但是实现起来非常困难。原因在于解决这些问题的本质,需要有效地描述微观粒子之间的复杂多体作用,最终对应的是求解一些高维复杂的微分方程。而这些方程可能在 100 多年前就已经存在,但一直以来都缺乏有效的计算工具和算法工具来克服维数灾难

维数灾难指求解已经熟知的方程所需要的计算复杂度指数依赖于输入的个数。比如蛋白质体系的输入为几十万起步,而计算的算力需求指数依赖于输入,这也意味着完全不可解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值