ForkJoin
ForkJoin(分之合并)在JDK1.7出现的,并行执行任务,提高效率,大数据量!
大数据:M安排Reduce(把大任务拆分为小人物)
特点:
工作窃取:有两个线程池在执行任务,A线程池执行完任务后发现B线程池还没执行完,A线程池就会将B线程池中等待的线程任务拿到自己的池中执行
操作
/**
* 求和计算
* 使用ForkJoin
* 1.forkJoinPool 通过它来执行
* 2.计算任务 forkJoinPool.execute(ForkJoinTask task)
* 3.计算类要继承RecursiveTask
*/
public class ForkJoinTest extends RecursiveTask<Long> {
private Long start;
private Long end;
//临界值
private Long temp = 10000L;
public ForkJoinTest(Long start, Long end) {
this.start = start;
this.end = end;
}
@Override
protected Long compute() {
if((end-start)<temp){
Long sum = 0L;
for(Long i=start;i<=end;i++){
sum += i;
}
return sum;
}else{
//中间值
Long middle = (start + end) / 2;
ForkJoinTest forkJoinTest1 = new ForkJoinTest(start, middle);
forkJoinTest1.fork(); //拆分任务,把任务压入线程队列
ForkJoinTest forkJoinTest2 = new ForkJoinTest(middle,end);
forkJoinTest2.fork();
return forkJoinTest1.join() + forkJoinTest2.join();
}
}
}
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.stream.LongStream;
public class Test {
public static void main(String[] args) throws ExecutionException, InterruptedException {
test1();
test2();
test3();
}
//普通
public static void test1(){
Long sum = 0L;
long start = System.currentTimeMillis();
for(Long i=1L;i<=10_0000_0000L;i++){
sum += i;
}
long end = System.currentTimeMillis();
System.out.println("普通获取sum=+"+sum+"时间"+(end-start));
}
//使用ForkJoin
public static void test2() throws ExecutionException, InterruptedException {
long start = System.currentTimeMillis();
ForkJoinPool forkJoinPool = new ForkJoinPool();
ForkJoinTask<Long> submit = forkJoinPool.submit(new ForkJoinTest(0L, 10_0000_0000L));
Long sum = submit.get();
long end = System.currentTimeMillis();
System.out.println("ForkJoin获取sum=+"+sum+"时间"+(end-start));
}
public static void test3(){
long start = System.currentTimeMillis();
long sum = LongStream.rangeClosed(0L, 10_0000_0000L).parallel().reduce(0, Long::sum);
long end = System.currentTimeMillis();
System.out.println("Stream并行流获取sum=+"+sum+"时间"+(end-start));
}
}
执行结果:
普通获取sum=+500000000500000000时间6638
ForkJoin获取sum=+500065535999828224时间4535
Stream并行流获取sum=+500000000500000000时间287
可以看出ForkJoin确实比普通的查询要快一些,并且它通过设置临界值,是可调节的,可优化的。
同时也对比出Stream的强大。