
机器学习课后习题
文章平均质量分 67
吴恩达机器学习系列课程课后编程实验
前端喵喵工程师
研究领域:运筹优化算法;电动车辆;物流配送;路径优化
前端工程师
展开
-
吴恩达机器学习编程题四(神经网络-BP)(python)
import numpy as npimport scipy.io as sioimport matplotlib.pyplot as pltfrom scipy.optimize import minimizedata = sio.loadmat('ex4data1.mat')raw_X = data['X']raw_y = data['y']X=np.insert(raw_X,0,values=1,axis=1)X.shapedef one_hot_encoder(raw_y):原创 2021-10-23 10:45:57 · 2225 阅读 · 0 评论 -
吴恩达机器学习编程题三(逻辑回归解决多分类问题)(Python)
import numpy as npimport matplotlib.pyplot as pltimport scipy.io as siodata = sio.loadmat('ex3data1.mat')dataprint(type(data))data.keys()raw_X = data['X']raw_y = data['y']print(raw_X.shape,raw_y.shape)def plot_an_image(X): ...原创 2021-10-09 19:57:01 · 234 阅读 · 0 评论 -
吴恩达机器学习编程题二(线性可分案例)(Python)
import numpy as npimport pandas as pdimport matplotlib.pyplot as pltpath = 'ex2data1.txt'data = pd.read_csv(path, names=['Exam 1', 'Exam 2', 'Accepted'])data.head()fig, ax = plt.subplots()ax.scatter(data[data['Accepted'] == 0]['Exam 1'], data[dat.原创 2021-10-07 20:25:02 · 88 阅读 · 0 评论 -
吴恩达机器学习编程题三(神经网络-向前传播)(Python)
import numpy as npimport scipy.io as siodata = sio.loadmat('ex3data1.mat')raw_X = data['X']raw_y = data['y']X = np.insert(raw_X,0,values=1,axis=1)X.shapey = raw_y.flatten()y.shapetheta = sio.loadmat('ex3weights.mat')theta.keys()theta1 = t原创 2021-10-09 19:59:54 · 198 阅读 · 0 评论 -
吴恩达机器学习编程题二(线性不可分案例)(Python)
import numpy as npimport pandas as pdimport matplotlib.pyplot as pltpath = 'ex2data2.txt'data = pd.read_csv(path, names=['Test 1', 'Test 2', 'Accepted'])data.head()fig, ax = plt.subplots()ax.scatter(data[data['Accepted'] == 0]['Test 1'], data[dat.原创 2021-10-07 20:26:30 · 143 阅读 · 0 评论 -
吴恩达机器学习编程题一(单变量线性回归)(Python)
import numpy as npimport pandas as pdimport matplotlib.pyplot as pltpath = 'ex1data1.txt'data = pd.read_csv(path, names=['Population', 'Profit'])print(data.head())print(data.describe())data.plot(kind='scatter', x='Population', y='Profit', label=.原创 2021-10-07 20:05:05 · 175 阅读 · 0 评论 -
吴恩达机器学习编程题一(多变量线性回归)(Python)
import numpy as npimport pandas as pdimport matplotlib.pyplot as pltdata = pd.read_csv('ex1data2.txt', names=['size', 'bedrooms', 'price'])print(data.head())def normalize_feature(data): return (data - data.mean()) / data.std()data = normali.原创 2021-10-07 20:16:16 · 99 阅读 · 0 评论