在并发场景中,会涉及到各种各样的锁,如公平锁,乐观锁,共享锁、分段锁等等,本篇文章主要对并发编程中的各种锁进行介绍,主要内容有:
- 公平锁 / 非公平锁
- 可重入锁 / 不可重入锁
- 独享锁 / 共享锁
- 互斥锁 / 读写锁
- 乐观锁 / 悲观锁
- 分段锁
- 偏向锁 / 轻量级锁 / 重量级锁
- 自旋锁
下面对各种锁进行详细介绍:
1、公平锁 / 非公平锁
公平锁
公平锁是指多个线程按照申请锁的顺序来获取锁。就是很公平,在并发环境中,每个线程在获取锁时会先查看此锁维护的等待队列,如果为空,或者当前线程是等待队列的第一个,就占有锁,否则就会加入到等待队列中,以后会按照First In First Out的规则从队列中取到自己。
公平锁的优点是等待锁的线程不会饿死。缺点是整体吞吐效率相对非公平锁要低,等待队列中除第一个线程以外的所有线程都会阻塞,CPU唤醒阻塞线程的开销比非公平锁大。
非公平锁
非公平锁是指多个线程获取锁的顺序并不是按照申请锁的顺序,有可能后申请的线程比先申请的线程优先获取锁。有可能会造成优先级反转或者饥饿现象。
非公平锁的优点是可以减少唤起线程的开销,整体的吞吐效率高,因为线程有几率不阻塞直接获得锁,CPU不必唤醒所有线程。缺点是处于等待队列中的线程可能会饿死,或者等很久才会获得锁。
典型应用
java jdk并发包中的ReentrantLock可以指定构造函数的boolean类型来创建公平锁和非公平锁(默认),比如:公平锁可以使用new ReentrantLock(true)实现。 对于Synchronized而言,是一种非公平锁。由于其并不像ReentrantLock是通过AQS的来实现线程调度,所以并没有任何办法使其变成公平锁。
关于什么是AQS,以及ReentrantLock的原理,请参考下面这篇文章:
https://www.cnblogs.com/joimages/p/12052657.html
2、可重入锁 / 不可重入锁
可重入锁
广义上的可重入锁指的是可重复、可递归调用的锁,在外层使用锁之后,在内层仍然可以使用,并且不发生死锁(前提得是同一个对象或者class),这样的锁就叫做可重入锁。ReentrantLock和synchronized都是可重入锁。
synchronized void setA() throws Exception{
Thread.sleep(1000);
setB();
}
synchronized void setB() throws Exception{
Thread.sleep(1000);
}
上面的代码体现了可重入锁的特点,如果不是可重入锁的话,setB可能不会被当前线程执行,可能造成死锁。
不可重入锁
不可重入锁,与可重入锁相反,不可递归调用,递归调用就发生死锁。我们使用自旋锁来模拟一个不可重入锁,代码如下:
import java.util.concurrent.atomic.AtomicReference;
public class UnreentrantLock {
private AtomicReference<Thread> owner = new AtomicReference<Thread>();
public void lock() {
Thread current = Thread.currentThread();
//这句是很经典的“自旋”语法,AtomicInteger中也有
for (;;) {
if (!owner.compareAndSet(null, current)) {
return;
}
}
}
public void unlock() {
Thread current = Thread.currentThread();
owner.compareAndSet(current, null);
}
}
代码也比较简单,使用原子引用来存放线程,同一线程两次调用lock()方法,如果不执行unlock()释放锁的话,第二次调用自旋的时候就会产生死锁,这个锁就不是可重入的,而实际上同一个线程不必每次都去释放锁再来获取锁,这样的调度切换是很耗资源的。
把它变成一个可重入锁 :
import java.util.concurrent.atomic.AtomicReference;
public class UnreentrantLock {
private AtomicReference<Thread> owner = new AtomicReference<Thread>();
private int state = 0;
public void lock() {
Thread current = Thread.currentThread();
if (current == owner.get()) {
state++;
return;
}
//这句是很经典的“自旋”式语法,AtomicInteger中也有
for (;;) {
if (!owner.compareAndSet(null, current)) {
return;
}
}
}
}
public void unlock() {
Thread current = Thread.currentThread();
if (current == owner.get()) {
if (state != 0) {
state--;
} else {
owner.compareAndSet(current, null);
}
}
}
}
在执行每次操作之前,判断当前锁持有者是否是当前对象,采用state计数,不用每次去释放锁。
ReentrantLock中可重入锁实现:
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
//就是这里
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
这里看非公平锁的锁获取方法,在AQS中维护了一个private volatile int state来计数重入次数,避免了频繁的持有释放操作,这样既提升了效率,又避免了死锁。
3、独享锁/共享锁
对于C.U.T包下的ReeReentrantLock和ReentrantReadWriteLock,一个是独享锁,一个是共享锁。
独享锁 :该锁每一次只能被一个线程所持有
共享锁 :该锁可被多个线程共有
典型的就是ReentrantReadWriteLock里的读锁,它的读锁是可以被共享的,但是它的写锁确每次只能被独占。读锁的共享可保证并发读是非常高效的,但是读写和写写,写读都是互斥的。
独享锁与共享锁也是通过AQS来实现的,通过实现不同的方法,来实现独享或者共享。 对于Synchronized而言,当然是独享锁。
4、互斥锁 / 读写锁
互斥锁
在访问共享资源之前对进行加锁操作,在访问完成之后进行解锁操作。 加锁后,任何其他试图再次加锁的线程会被阻塞,直到当前进程解锁。如果解锁时有一个以上的线程阻塞,那么所有该锁上的线程都被变为就绪状态, 第一个变为就绪状态的线程又执行加锁操作,那么其他的线程又会进入等待。 在这种方式下,只有一个线程能够访问被互斥锁保护的资源。
读写锁
读写锁既是互斥锁,又是共享锁,read模式是共享,write是互斥(排它锁)的。
读写锁有三种状态 :读加锁状态、写加锁状态和不加锁状态
读写锁在Java中的具体实现就是 ReadWriteLock:
一次只有一个线程可以占有写模式的读写锁,但是多个线程可以同时占有读模式的读写锁。 只有一个线程可以占有写状态的锁,但可以有多个线程同时占有读状态锁,这也是它可以实现高并发的原因。当其处于写状态锁下,任何想要尝试获得锁的线程都会被阻塞,直到写状态锁被释放;如果是处于读状态锁下,允许其它线程获得它的读状态锁,但是不允许获得它的写状态锁,直到所有线程的读状态锁被释放;为了避免想要尝试写操作的线程一直得不到写状态锁,当读写锁感知到有线程想要获得写状态锁时,便会阻塞其后所有想要获得读状态锁的线程。所以读写锁非常适合资源的读操作远多于写操作的情况。
5、乐观锁 / 悲观锁
乐观锁与悲观锁是一种广义上的概念,体现在看待线程同步的不同角度,在Java和数据库中都有此概念对应的实际应用。
悲观锁
总是假设最坏的情况,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会阻塞直到它拿到锁( 共享资源每次只给一个线程使用,其它线程阻塞,用完后再把资源转让给其它线程 )。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。Java中synchronized和ReentrantLock等独占锁就是悲观锁思想的实现。
乐观锁
总是假设最好的情况,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号机制和CAS算法实现。乐观锁适用于多读的应用类型,这样可以提高吞吐量 ,像数据库提供的类似于write_condition机制,其实都是提供的乐观锁。在Java中java.util.concurrent.atomic包下面的原子变量类就是使用了乐观锁的一种实现方式CAS实现的 。
CAS全称 Compare And Swap(比较与交换),是一种无锁算法。在不使用锁(没有线程被阻塞)的情况下实现多线程之间的变量同步。
简单来说,CAS算法有3个三个操作数:
- 需要读写的内存值 V。
- 进行比较的值 A。
- 要写入的新值 B。
当且仅当预期值A和内存值V相同时,将内存值V修改为B,否则返回V。这是一种乐观锁的思路,它相信在它修改之前,没有其它线程去修改它,而Synchronized是一种悲观锁,它认为在它修改之前,一定会有其它线程去修改它,悲观锁效率很低。
- 悲观锁适合写操作多的场景,先加锁可以保证写操作时数据正确。
- 乐观锁适合读操作多的场景,不加锁的特点能够使其读操作的性能大幅提升。
6、分段锁
分段锁其实是一种锁的设计,并不是具体的一种锁。
对于ConcurrentHashMap而言,其并发的实现就是通过分段锁的形式来实现高效的并发操作:
ConcurrentHashMap中的分段锁称为Segment,它即类似于HashMap(JDK7与JDK8中HashMap的实现)的结构,即内部拥有一个Entry数组,数组中的每个元素又是一个链表;同时又是一个ReentrantLock(Segment继承了ReentrantLock)。当需要put元素的时候,并不是对整个hashmap进行加锁,而是先通过hashcode来知道他要放在那一个分段中,然后对这个分段进行加锁,所以当多线程put的时候,只要不是放在一个分段中,就实现了真正的并行的插入。但是,在统计size的时候,可就是获取hashmap全局信息的时候,就需要获取所有的分段锁才能统计。
其实说的简单一点就是 :容器里有多把锁,每一把锁用于锁容器其中一部分数据,那么当多线程访问容器里不同数据段的数据时,线程间就不会存在锁竞争,从而可以有效的提高并发访问效率,这就是ConcurrentHashMap所使用的锁分段技术,首先将数据分成一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问。
比如在ConcurrentHashMap中使用了一个包含16个锁的数组,每个锁保护所有散列桶的1/16,其中第N个散列桶由第(N mod 16)个锁来保护。假设使用合理的散列算法使关键字能够均匀的分布,那么这大约能使对锁的请求减少到越来的1/16。也正是这项技术使得ConcurrentHashMap支持多达16个并发的写入线程。
7、偏向锁 / 轻量级锁 / 重量级锁
锁的状态 :
- 无锁状态
- 偏向锁状态
- 轻量级锁状态
- 重量级锁状态
锁的状态是通过对象监视器在对象头中的字段来表明的。 四种状态会随着竞争的情况逐渐升级,而且是不可逆的过程,即不可降级。 这四种状态都不是Java语言中的锁 ,而是Jvm为了提高锁的获取与释放效率而做的优化( 使用synchronized时 )。
偏向锁
偏向锁是指一段同步代码一直被一个线程所访问,那么该线程会自动获取锁,降低获取锁的代价。
轻量级
轻量级锁是指当锁是偏向锁的时候,被另一个线程所访问,偏向锁就会升级为轻量级锁,其他线程会通过自旋的形式尝试获取锁,不会阻塞,提高性能。
重量级锁
重量级锁是指当锁为轻量级锁的时候,另一个线程虽然是自旋,但自旋不会一直持续下去,当自旋一定次数的时候,还没有获取到锁,就会进入阻塞,该锁膨胀为重量级锁。重量级锁会让其他申请的线程进入阻塞,性能降低。
8、自旋锁
是指当一个线程在获取锁的时候,如果锁已经被其它线程获取,那么该线程将循环等待,然后不断的判断锁是否能够被成功获取,直到获取到锁才会退出循环 。
它是为实现保护共享资源而提出一种锁机制。其实,自旋锁与互斥锁比较类似,它们都是为了解决对某项资源的互斥使用。 无论是互斥锁,还是自旋锁,在任何时刻,最多只能有一个保持者,也就说,在任何时刻最多只能有一个执行单元获得锁 。但是两者在调度机制上略有不同。对于互斥锁,如果资源已经被占用,资源申请者只能进入睡眠状态。但是自旋锁不会引起调用者睡眠,如果自旋锁已经被别的执行单元保持,调用者就一直循环在那里看是否该自旋锁的保持者已经释放了锁,”自旋”一词就是因此而得名。
Java如何实现自旋锁?下面是个简单的例子:
public class SpinLock {
private AtomicReference<Thread> cas = new AtomicReference<Thread>();
public void lock() {
Thread current = Thread.currentThread();
// 利用CAS
while (!cas.compareAndSet(null, current)) {
// DO nothing
}
}
public void unlock() {
Thread current = Thread.currentThread();
cas.compareAndSet(current, null);
}
}
}
lock()方法利用的CAS,当第一个线程A获取锁的时候,能够成功获取到,不会进入while循环,如果此时线程A没有释放锁,另一个线程B又来获取锁,此时由于不满足CAS,所以就会进入while循环,不断判断是否满足CAS,直到A线程调用unlock方法释放了该锁。
自旋锁存在的问题:
1、如果某个线程持有锁的时间过长,就会导致其它等待获取锁的线程进入循环等待,消耗CPU。使用不当会造成CPU使用率极高;
2、上面Java实现的自旋锁不是公平的,即无法满足等待时间最长的线程优先获取锁。不公平的锁就会存在“线程饥饿”问题。
自旋锁的优点:
1、自旋锁不会使线程状态发生切换,一直处于用户态,即线程一直都是active的;不会使线程进入阻塞状态,减少了不必要的上下文切换,执行速度快;
2、非自旋锁在获取不到锁的时候会进入阻塞状态,从而进入内核态,当获取到锁的时候需要从内核态恢复,需要线程上下文切换。 (线程被阻塞后便进入内核(Linux)调度状态,这个会导致系统在用户态与内核态之间来回切换,严重影响锁的性能)。
可重入的自旋锁和不可重入的自旋锁:
开始的那段代码,仔细分析一下就可以看出,它是不支持重入的,即当一个线程第一次已经获取到了该锁,在锁释放之前又一次重新获取该锁,第二次就不能成功获取到。由于不满足CAS,所以第二次获取会进入while循环等待,而如果是可重入锁,第二次也是应该能够成功获取到的。而且,即使第二次能够成功获取,那么当第一次释放锁的时候,第二次获取到的锁也会被释放,而这是不合理的。
为了实现可重入锁,我们需要引入一个计数器,用来记录获取锁的线程数。
public class ReentrantSpinLock {
private AtomicReference<Thread> cas = new AtomicReference<Thread>();
private int count;
public void lock() {
Thread current = Thread.currentThread();
if (current == cas.get()) { // 如果当前线程已经获取到了锁,线程数增加一,然后返回
count++;
return;
}
// 如果没获取到锁,则通过CAS自旋
while (!cas.compareAndSet(null, current)) {
// DO nothing
}
}
public void unlock() {
Thread cur = Thread.currentThread();
if (cur == cas.get()) {
if (count > 0) {// 如果大于0,表示当前线程多次获取了该锁,释放锁通过count减一来模拟
count--;
} else {// 如果count==0,可以将锁释放,这样就能保证获取锁的次数与释放锁的次数是一致的了。
cas.compareAndSet(cur, null);
}
}
}
}
自旋锁与互斥锁:
- 自旋锁与互斥锁都是为了实现保护资源共享的机制。
- 无论是自旋锁还是互斥锁,在任意时刻,都最多只能有一个保持者。
- 获取互斥锁的线程,如果锁已经被占用,则该线程将进入睡眠状态;获取自旋锁的线程则不会睡眠,而是一直循环等待锁释放。
自旋锁总结:
- 自旋锁:线程获取锁的时候,如果锁被其他线程持有,则当前线程将循环等待,直到获取到锁。
- 自旋锁等待期间,线程的状态不会改变,线程一直是用户态并且是活动的(active)。
- 自旋锁如果持有锁的时间太长,则会导致其它等待获取锁的线程耗尽CPU。
- 自旋锁本身无法保证公平性,同时也无法保证可重入性。
- 基于自旋锁,可以实现具备公平性和可重入性质的锁。