黑洞数也称为陷阱数,又称“Kaprekar问题”,是一类具有奇特转换特性的数。
任何一个各位数字不全相同的三位数,经有限次“重排求差”操作,总会得到495。最后所得的495即为三位黑洞数。所谓“重排求差”操作即组成该数的数字重排后的最大数减去重排后的最小数。(6174为四位黑洞数。)
例如,对三位数207:
- 第1次重排求差得:720 - 27 = 693;
- 第2次重排求差得:963 - 369 = 594;
- 第3次重排求差得:954 - 459 = 495;
以后会停留在495这一黑洞数。如果三位数的3个数字全相同,一次转换后即为0。
任意输入一个三位数,编程给出重排求差的过程。
输入格式:
输入在一行中给出一个三位数。
输出格式:
按照以下格式输出重排求差的过程:
序号: 数字重排后的最大数 - 重排后的最小数 = 差值
序号从1开始,直到495出现在等号右边为止。
输入样例:
123
输出样例:
1: 321 - 123 = 198
2: 981 - 189 = 792
3: 972 - 279 = 693
4: 963 - 369 = 594
5: 954 - 459 = 495
//黑洞数
int max_num(int n)
{
int x = n / 100;
int y = n / 10 % 10;
int z = n % 10;
int temp;
if (x < y)
{
temp = x;
x = y;
y = temp;
}
if (x < z)
{
temp = x;
x = z;
z = temp;
}
if (y < z)
{

本文介绍了一种特殊的数学现象——黑洞数,重点探讨了三位数经过特定运算后如何收敛到495这一数值,并通过编程实现了该过程的自动化展示。
最低0.47元/天 解锁文章
5036

被折叠的 条评论
为什么被折叠?



