Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.
We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.
Figure A Sample Input of Radar Installations
Input
The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.
The input is terminated by a line containing pair of zeros
Output
For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.
Sample Input
3 2 1 2 -3 1 2 1 1 2 0 2 0 0
Sample Output
Case 1: 2 Case 2: 1
题意:之前做的覆盖问题都是直接知道圆心的位置,这个是需要自己算的,题意就是给出一个x-y轴,x轴上方给出几个点,要求用圆把这些点包围起来,圆心必须在x轴上,并且圆的半径是固定的。给出多组测试用例,第一行两个数n,d;表示n个点,圆的半径是d,下面是n个点,两个数x,y,表示一个点的坐标位置。
题解:将结构体按照横坐标从小到大排序,算出圆心在横坐标上的位置,如果下一个圆心在这个圆心的左边,那么圆心就更新成为下一个圆心,如果下一个圆心在这个圆心的右边,就需要计算这个点到当前圆心的距离是否大于d,如果大于的话,就需要重新画个圆,画个图就比较容易理解
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
using namespace std;
struct Ti
{
int x,y;
}t[1010];
bool cmp(Ti a,Ti b)
{
if(a.x!=b.x)
return a.x<b.x;
return a.y>b.y;
}
int main()
{
int n,d,h=0;
while(~scanf("%d%d",&n,&d))
{
h++;
if(n==0&&d==0)
break;
int i,maxx=-1;
for(i=0;i<n;i++)
{
scanf("%d %d",&t[i].x,&t[i].y);
maxx=max(maxx,t[i].y);
}
if(maxx>d)
{
printf("Case %d: ",h);
printf("-1\n");
continue;
}
sort(t,t+n,cmp);
double o=t[0].x+sqrt((double)d*d-t[0].y*t[0].y),o1;
int sum=1;
i=1;
while(i<n)
{
o1=t[i].x+sqrt((double)d*d-t[i].y*t[i].y);
if(o1<o)
{
o=o1;
i++;
continue;
}
if(sqrt((double)(t[i].x-o)*(t[i].x-o)+t[i].y*t[i].y)>d)
{
o=o1;
sum++;
}
i++;
}
printf("Case %d: %d\n",h,sum);
}
return 0;
}