Preventing Catastrophic Overfitting in Fast Adversarial Training

Wang Z, Wang H, Tian C, et al. Preventing Catastrophic Overfitting in Fast Adversarial Training: A Bi-level Optimization Perspective[C]//European Conference on Computer Vision. Springer, Cham, 2025: 144-160.


Introduction:

  • Adversarial training (AT)

  • adversarial examples (AEs)

  • fast AT: a single-step attack strategy


Problems:

  • catastrophic overfitting

  • on complex tasks or with large-parameter models

  • FGSM-PCO


Methods:

  • an adaptive mechanism

  • loss function

FGSM:

Experiments:

  • CIFAR10, CIFAR100 and Tiny-ImageNet

  • ResNet18, PreActResNet18, WideResNet34-10

  • FGSMRS, FGSM-GA, FreeAT, TRADES, and FGSM-PGI


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值