Java多线程
1、进程与线程
Process(进程):程序的一次执行过程,他是一个动态的概念,是系统分配的单位。
Thread(线程):一个进程可以有多个线程。
注意:很多多线程是模拟出来的,真正的多线程是指有多个cpu,及多核,如服务器。如果是模拟出来的多线程,即在一个cpu的情况下,在同一个时间点,cpu只能执行一个代码,因为切换的很快,所有就有同时执行的错觉。
核心概念:
- 线程就是独立的执行路径;
- 在程序执行时,即使没有自己创建线程,后台也会有多个线程,如主线程,gc线程(垃圾回收);
- main()称之为主线程,为系统的入口,用于执行整个程序
- 在一个进程中,如果开辟了多个线程,线程的运行由调度器安排调度,调度器是与操作系统紧密相关的,先后顺序是不能人为干预的;
- 对同一份资源操作时,会存在资源抢夺的问题,需要加入并发控制;
- 线程会带来额外的开销,如cpu调度时间,并发控制开销。
- 每个线程在自己的工作内存交互,内存控制不当会造成数据不一致。
2、线程创建
继承Thread类(不建议使用:避免OOP单线程局限性)
线程开启不一定立即执行,由cpu调度执行
//1.继承Thread类
//2.重写run方法
//3.调用start开启线程
public class StartThread1 extends Thread {
@Override
public void run() {
for (int i = 0; i < 200; i++) {
System.out.println("我在看代码"+i);
}
}
public static void main(String[] args) {
StartThread1 startThread1 = new StartThread1();
startThread1.start();
for (int i = 0; i < 1000; i++) {
System.out.println("我在学多线程"+i);
}
}
}
继承Thread类实现多文件下载
首先要导入common-io包
public class StartThread2 extends Thread {
private String url;
private String name;
public StartThread2(String url,String name){
this.url = url;
this.name=name;
}
@Override
public void run() {
WebDownloader webDownloader = new WebDownloader();
webDownloader.downloader(url,name);
System.out.println("下载了文件名为"+name);
}
public static void main(String[] args) {
StartThread2 startThread1 = new StartThread2("https://img.bosszhipin.com/beijin/upload/image/20191225/3f7fda0998317f22ec614bfc392848b9.jpg?x-oss-process=image/format,jpg", "1.jpg");
StartThread2 startThread2 = new StartThread2("https://img.bosszhipin.com/beijin/upload/image/20191225/35f18357bbff0625465bb716d94f336a.jpg?x-oss-process=image/format,jpg", "2.jpg");
StartThread2 startThread3 = new StartThread2("https://img.bosszhipin.com/beijin/upload/image/20191225/f1ab4555112c48503c7fdd8712531102.jpg?x-oss-process=image/format,jpg", "3.jpg");
startThread1.start();
startThread2.start();
startThread3.start();
}
}
//下载器
class WebDownloader{
public void downloader(String url,String name) {
try {
FileUtils.copyURLToFile(new URL(url),new File(name));
} catch (IOException e) {
e.printStackTrace();
System.out.println("IO异常");
}
}
}
实现Runnable接口(灵活方便,方便同一个对象被多个线程使用)
//1.实现Runable接口
//2.重写run方法
//3.创建一个Thread对象丢入runnable接口实现类作为参数
//4.调用start方法
public class StartRunable1 implements Runnable {
@Override
public void run() {
for (int i = 0; i < 200; i++) {
System.out.println("我在看代码"+i);
}
}
public static void main(String[] args) {
StartRunable1 startRunable1 = new StartRunable1();
//创建线程对象,通过线程对象来开启我们的线程,代理
Thread thread = new Thread(startRunable1);
thread.start();
for (int i = 0; i < 1000; i++) {
System.out.println("我在学多线程"+i);
}
}
}
实现Runnable接口实现多文件下载
public class StartRunnable2 implements Runnable {
private String url;
private String name;
public StartRunnable2(String url,String name){
this.url = url;
this.name=name;
}
@Override
public void run() {
WebDownloader webDownloader = new WebDownloader();
webDownloader.downloader(url,name);
System.out.println("下载了文件名为"+name);
}
public static void main(String[] args) {
StartRunnable2 s1 = new StartRunnable2("https://img.bosszhipin.com/beijin/upload/image/20191225/3f7fda0998317f22ec614bfc392848b9.jpg?x-oss-process=image/format,jpg", "1.jpg");
StartRunnable2 s2 = new StartRunnable2("https://img.bosszhipin.com/beijin/upload/image/20191225/35f18357bbff0625465bb716d94f336a.jpg?x-oss-process=image/format,jpg", "2.jpg");
StartRunnable2 s3 = new StartRunnable2("https://img.bosszhipin.com/beijin/upload/image/20191225/f1ab4555112c48503c7fdd8712531102.jpg?x-oss-process=image/format,jpg", "3.jpg");
new Thread(s1).start();
new Thread(s2).start();
new Thread(s3).start();
}
}
//下载器
class WebDownloader{
public void downloader(String url,String name) {
try {
FileUtils.copyURLToFile(new URL(url),new File(name));
} catch (IOException e) {
e.printStackTrace();
System.out.println("IO异常");
}
}
}
实现Callable接口
- 重写Callable接口,需要返回值类型
- 重写call方法
- 创建目标对象
- 创建执行服务 ExecutorService executorService = Executors.newFixedThreadPool();
- 提交执行 Futuren<> r1 = executorService.submit()
- 过去结果 r1.get();
- 关闭服务 executorService.shutdownNow();
public class TestCallable implements Callable {
private String url;
private String name;
public TestCallable(String url, String name) {
this.url = url;
this.name = name;
}
@Override
public Boolean call(){
WebDownloader webDownloader = new WebDownloader();
webDownloader.downloader(url,name);
System.out.println("下载了文件名为"+name);
return true;
}
public static void main(String[] args) throws ExecutionException, InterruptedException {
TestCallable t1 = new TestCallable("https://img.bosszhipin.com/beijin/upload/image/20191225/3f7fda0998317f22ec614bfc392848b9.jpg?x-oss-process=image/format,jpg", "1.jpg");
TestCallable t2 = new TestCallable("https://img.bosszhipin.com/beijin/upload/image/20191225/35f18357bbff0625465bb716d94f336a.jpg?x-oss-process=image/format,jpg", "2.jpg");
TestCallable t3 = new TestCallable("https://img.bosszhipin.com/beijin/upload/image/20191225/f1ab4555112c48503c7fdd8712531102.jpg?x-oss-process=image/format,jpg", "3.jpg");
//创建执行服务,创建一个线程池
ExecutorService executorService = Executors.newFixedThreadPool(3);
//提交事务,向线程池中提交,相当于start方法
Future<Boolean> r1 = executorService.submit(t1);
Future<Boolean> r2 = executorService.submit(t2);
Future<Boolean> r3 = executorService.submit(t3);
//得到返回值
boolean rs1 = r1.get();
boolean rs2 = r2.get();
boolean rs3 = r3.get();
//关闭服务
executorService.shutdownNow();
}
}
//下载器
class WebDownloader{
public void downloader(String url,String name) {
try {
FileUtils.copyURLToFile(new URL(url),new File(name));
} catch (IOException e) {
e.printStackTrace();
System.out.println("IO异常");
}
}
}
3、静态代理
- 真实对象和代理对象都要实现同一个接口
- 代理对象需要代理真实角色
public class StacticProxy {
public static void main(String[] args) {
WeddingCompany weddingCompany = new WeddingCompany(new You());
weddingCompany.HappyMarry();
}
}
interface Marry {
void HappyMarry();
}
class You implements Marry {
@Override
public void HappyMarry() {
System.out.println("要结婚了");
}
}
class WeddingCompany implements Marry {
private Marry target;
public WeddingCompany(Marry target) {
this.target = target;
}
@Override
public void HappyMarry() {
befor();
//真实对象的结婚方法
this.target.HappyMarry();
after();
}
private void after() {
System.out.println("收钱");
}
private void befor() {
System.out.println("布置现场");
}
}
4、线程的方法
setPriority(int newPriority) //更改现成的优先级
sleep(long millis) //在指定毫秒数内让当前正在执行的线程休眠
join() //等待该线程终止(插队)
yield() //暂停当前正在执行的线程对象,并执行其他线程
interrupt() //中断线程,尽量不要使用
isAlive() //测试线程是否在活动状态
5、线程停止
停止线程一般使用标志位,让线程正常停止,不要使用stop或者destroy等方法
使用外部标志位,让线程正常停止
public class TestStop implements Runnable {
private boolean flag =true;
@Override
public void run() {
int i =0;
while (flag){
System.out.println("run----"+i++);
}
}
public void stop(){
this.flag=false;
}
public static void main(String[] args) {
TestStop testStop = new TestStop();
new Thread(testStop).start();
for (int i = 0; i < 1000; i++) {
System.out.println("main");
if (i==900){
testStop.stop();
System.out.println("线程该停止了");
}
}
}
}
6、线程休眠
- sleep(时间)指定当前线程阻塞的毫秒数
- sleep存在异常InterruptedException
- sleep时间达到后线程进入就绪状态
- sleep可以模拟网络延时,倒计时等
- 每一个对象都有锁,sleep不会释放锁
模拟倒计时
public class TestSleep2 {
public static void main(String[] args) throws InterruptedException {
tenDown();
}
public static void tenDown() throws InterruptedException {
int num = 10;
while (true){
Thread.sleep(1000);
System.out.println(num--);
if (num<=0){
break;
}
}
}
}
7、线程礼让
- 礼让线程,让当前正在执行的线程暂停,但不阻塞
- 让线程从运行状态转为就绪状态
- 让CPU重新调度,礼让不一定成功,看CPU的心情
//礼让不一样成功,看cpu
public class TestYield {
public static void main(String[] args) {
MyYield myYield = new MyYield();
new Thread(myYield,"a").start();
new Thread(myYield,"b").start();
}
}
class MyYield implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName()+"线程开始执行");
Thread.yield();
System.out.println(Thread.currentThread().getName()+"线程结束执行");
}
}
8、合并线程
待此线程执行完成后,再执行其他线程,其他线程阻塞(插队)
会造成线程阻塞
public class TestJoin implements Runnable {
@Override
public void run() {
for (int i = 0; i < 100; i++) {
System.out.println("vip来了"+i);
}
}
public static void main(String[] args) throws InterruptedException {
TestJoin testJoin = new TestJoin();
Thread thread = new Thread(testJoin);
thread.start();
for (int i = 0; i < 1000; i++) {
if (i==200){
thread.join();
}
System.out.println("main"+i);
}
}
}
9、线程状态
-
线程状态。线程可以处于以下状态之一:
- NEW
尚未启动的线程处于此状态。 - RUNNABLE
在Java虚拟机中执行的线程处于此状态。 - BLOCKED
被阻塞等待监视器锁定的线程处于此状态。 - WAITING
正在等待另一个线程执行特定动作的线程处于此状态。 - TIMED_WAITING
正在等待另一个线程执行动作达到指定等待时间的线程处于此状态。 - TERMINATED
已退出的线程处于此状态。
一个线程可以在给定时间点处于一个状态。这些状态是不反映任何操作系统线程状态的虚拟机状态。
- NEW
//观察测试线程的状态
public class TestState {
public static void main(String[] args) throws InterruptedException {
Thread thread = new Thread(()->{
for (int i = 0; i < 5; i++) {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("===================");
});
Thread.State state = thread.getState();
System.out.println(state);//NEW
thread.start();
state = thread.getState();
System.out.println(state);//RUNNABLE
while (state != Thread.State.TERMINATED){
Thread.sleep(100);
state = thread.getState();
System.out.println(state);
}
//死亡之后的前程不能再启动
thread.start();
}
}
10、线程优先级
线程优先级(1->10)高不一定有限执行,只是权重大了,还是看CPU,默认5
public class TestPriority {
public static void main(String[] args) {
System.out.println("主线程优先级---->"+ Thread.currentThread().getPriority());
MyPriority myPriority = new MyPriority();
Thread t1 = new Thread(myPriority);
Thread t2 = new Thread(myPriority);
Thread t3 = new Thread(myPriority);
Thread t4 = new Thread(myPriority);
Thread t5 = new Thread(myPriority);
Thread t6 = new Thread(myPriority);
//先设置优先级,在启动
t1.start();
t2.setPriority(1);
t2.start();
t3.setPriority(5);
t3.start();
t4.setPriority(10);
t4.start();
// t5.setPriority(0);
// t5.start();
//
// t6.setPriority(12);
// t6.start();
}
}
class MyPriority implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName()+"---->"+ Thread.currentThread().getPriority());
}
}
11、守护线程
- 线程分为用户线程和守护(Daemon)线程
- 虚拟机必须确保用户线程执行完毕
- 虚拟机不用等待守护线程执行完毕
- 如:后台记录操作日志,监控内存,垃圾回收等。。
public class TestDaemon {
public static void main(String[] args) {
God god = new God();
You you = new You();
Thread thread = new Thread(god);
//开启守护线程,默认false
thread.setDaemon(true);
thread.start();
new Thread(you).start();
}
}
class You implements Runnable{
@Override
public void run() {
for (int i = 0; i < 36500; i++) {
System.out.println("你开心就好");
}
System.out.println("goodbye world");
}
}
class God implements Runnable{
@Override
public void run() {
while (true){
System.out.println("上帝");
}
}
}
12、线程同步
多个线程操作同一个资源,加入锁机制synchronized,当一个线程获得对象的排它锁,独占资源,其他线程必须等待,使用后释放锁即可,存在以下问题:
- 一个线程持有锁会导致其他所有需要此锁的线程挂起
- 再多个线程竞争下,加锁,释放锁会导致比较多的上下文切换和调度延时,引起性能问题;
- 如果一个优先级高的线程等待一个优先级低的线程释放锁会导致优先级倒置,引发性能问题
锁的对象就是变化的量
不安全的买票
public class UnsafeBuyTicket {
public static void main(String[] args) {
BuyTicket buyTicket = new BuyTicket();
new Thread(buyTicket,"我").start();
new Thread(buyTicket,"你").start();
new Thread(buyTicket,"它").start();
}
}
class BuyTicket implements Runnable{
//票
private int ticketNum = 10;
boolean flag =true;
@Override
public void run() {
//买票
while (flag){
buy();
}
}
private void buy(){
if (ticketNum<=0){
flag = false;
return;
}else {
//模拟延时
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName()+"拿到第"+ticketNum+"张票");
ticketNum--;
}
}
}
安全的买票
//synchronized同步方法,锁的时this
private synchronized void buy(){
if (ticketNum<=0){
flag = false;
return;
}else {
//模拟延时
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName()+"拿到第"+ticketNum+"张票");
ticketNum--;
}
}
不安全的取钱
public class UnsafeBank {
public static void main(String[] args) {
Account account = new Account(100, "123");
Drawing you = new Drawing(account, 50,"你");
Drawing girlFriend = new Drawing(account, 100,"女朋友");
you.start();
girlFriend.start();
}
}
//账户
class Account {
int money;
String name;
public Account(int money, String name) {
this.money = money;
this.name = name;
}
}
//银行取款
class Drawing extends Thread{
//账户
Account account;
//取出的钱
int drawingMoney;
//手里的钱
int nowMoney;
public Drawing( Account account, int drawingMoney,String name){
super(name);
this.account=account;
this.drawingMoney=drawingMoney;
}
@Override
public void run() {
if (account.money-drawingMoney<0){
System.out.println(Thread.currentThread().getName()+"钱不够");
return;
}
try {
//可以方法问题
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
account.money=account.money-drawingMoney;
nowMoney=nowMoney+drawingMoney;
System.out.println(account.name+"余额为:"+account.money);
System.out.println(this.getName()+"手里的钱:"+nowMoney);
}
}
安全的取钱
给账户加锁
@Override
public void run() {
synchronized (account) {
if (account.money - drawingMoney < 0) {
System.out.println(Thread.currentThread().getName() + "钱不够");
return;
}
try {
//可以方法问题
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
account.money = account.money - drawingMoney;
nowMoney = nowMoney + drawingMoney;
System.out.println(account.name + "余额为:" + account.money);
System.out.println(this.getName() + "手里的钱:" + nowMoney);
}
}
13、死锁
多个线程各自占有一些共享资源,并且相互等待其他线程占有的资源才能运行,而导致两个或者多个线程都在等待对方释放资源,都停止执行的情形,某一个代码块同时拥有两个以上对象的锁时,就可能回发生死锁。
public class DeadLock {
public static void main(String[] args) {
Makeup g1 = new Makeup(0, "灰姑娘");
Makeup g2 = new Makeup(1, "白姑娘");
g1.start();
g2.start();
}
}
//口红
class Lipstick{
}
//镜子
class Mirror{
}
class Makeup extends Thread{
//需要的资源只有一份,用static来保证只有一份
static Lipstick lipstick = new Lipstick();
static Mirror Mirror = new Mirror();
int choice;
String name;
public Makeup(int choice,String name){
this.choice = choice;
this.name = name;
}
@Override
public void run() {
try {
makeUp();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//化妆互相持有对方的锁,需要拿到对方的资源
private void makeUp() throws InterruptedException {
if (choice==0){
synchronized (lipstick){//获得空红的锁
System.out.println(this.name+"获得口红的锁");
Thread.sleep(1000);
//一秒后需要获得镜子的锁
synchronized (Mirror){
System.out.println(this.name+"获得镜子的锁");
}
}
}else {
synchronized (Mirror){//获得空红的锁
System.out.println(this.name+"获得镜子的锁");
Thread.sleep(2000);
//一秒后需要获得镜子的锁
synchronized (lipstick){
System.out.println(this.name+"获得空红的锁");
}
}
}
}
}
14、Lock锁
- 从JDK5.0开始,提供更强大的线程同步机制—通过显式定义同步锁对象来实现同步。同步锁使用Lock对象来充当
- Lock接口是控制多个线程对共享资源进行访问的工具。
- 锁提供了对共享资源的独占访问,每次只能有一个线程对Lock对象加锁,线程开始访问共享资源之前应先获得Lock对象
- ReentrantLock(可重入锁)类实现了Lock,他拥有与synchronized相同的并发性和内存语义,再实现线程安全的控制中,比较常用的就是ReentrantLock,可以显式加锁、释放锁。
需要手动的加锁解锁
public class TestLock {
public static void main(String[] args) {
TestLock2 testLock2 = new TestLock2();
new Thread(testLock2).start();
new Thread(testLock2).start();
new Thread(testLock2).start();
}
}
class TestLock2 implements Runnable{
private int ticketNums =10;
//定义Lock类
private final ReentrantLock reentrantLock = new ReentrantLock();
@Override
public void run() {
while (true){
try {
reentrantLock.lock();
if (ticketNums>0){
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(ticketNums--);
}else {
break;
}
}finally {
reentrantLock.unlock();
}
}
}
}
15、线程通信
生产者消费者问题
生产者和消费者共享同一个资源,并且生产者和消费者之间相互依赖,互为条件。
wait() //表示线程一直等待,直到其他线程通知,与sleep不同,会释放锁
wait() //指定等待的毫秒数
notify() //唤醒一个处于等待状态的线程
notifyAll() //唤醒同一个对象上所有调用wait()方法的线程,优先级高的优先调度
注意:均为Object类的方法,都只能再同步方法或者同步代码块中使用,否则会抛出异常
管程法
//利用缓冲区解决
public class TestPC {
public static void main(String[] args) {
SynContainer container = new SynContainer();
new Productor(container).start();
new Consumer(container).start();
}
}
//生产者
class Productor extends Thread{
SynContainer container;
public Productor(SynContainer container){
this.container = container;
}
@Override
public void run() {
for (int i = 0; i <100 ; i++) {
container.push(new Chicken(i));
System.out.println("生产了"+i+"只鸡");
}
}
}
//消费者
class Consumer extends Thread{
SynContainer container;
public Consumer(SynContainer container){
this.container = container;
}
@Override
public void run() {
for (int i = 0; i <100 ; i++) {
System.out.println("消费了"+container.pop().id+"只鸡");
}
}
}
//产品
class Chicken{
int id;
public Chicken(int id) {
this.id = id;
}
}
//缓冲区
class SynContainer{
//需要一个容器大小
Chicken[] chickens = new Chicken[10];
//容器计数器
int count = 0;
//生产者放入产品
public synchronized void push(Chicken chicken){
//如果容器满了
if (count==chickens.length){
//通知消费者
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//如果没有满,我们就需要丢入产品
chickens[count] = chicken;
count++;
//可以通知消费者消费
this.notifyAll();
}
//消费者消费
public synchronized Chicken pop(){
//判断是否有产品
if (count==0){
//等待生产者生产,消费者等待
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
count--;
Chicken chicken = chickens[count];
//吃完通知消费者
this.notifyAll();
return chicken;
}
}
信号灯法
//信号灯法,通过标志位解决
public class TestPC2 {
public static void main(String[] args) {
TV tv = new TV();
new Player(tv).start();
new Watcher(tv).start();
}
}
//生产者
class Player extends Thread{
TV tv;
public Player(TV tv){
this.tv=tv;
}
@Override
public void run() {
for (int i = 0; i <20 ; i++) {
if (i%2==0){
this.tv.play("快乐大本营");
}else {
this.tv.play("抖音");
}
}
}
}
//消费者
class Watcher extends Thread{
TV tv;
public Watcher(TV tv){
this.tv=tv;
}
@Override
public void run() {
for (int i = 0; i <20 ; i++) {
tv.watch();
}
}
}
//产品
class TV{
//演员
String voice;//节目
boolean flag = true;//标志位
//表演
public synchronized void play(String voice){
if (!flag){
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("表演了"+voice);
//通知观众
this.notifyAll();
this.voice = voice;
this.flag = !flag;
}
//观看
public synchronized void watch(){
if (flag){
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("观看了"+voice);
//通知演员表演
this.notifyAll();
this.flag=!flag;
}
}
16、线程池
- JDK5.0提供了线程池相关的API:ExecutorService和Executors
- ExecutorService:真正的线程池接口。常见的子类ThreadPoolExecutor
- execute(Runnable command):执行任务/命令,没有返回值,一般用来执行Runnable
- submit:执行任务,有返回值,一般用来执行Callable
- shutdown():关闭连接池
- Executors:工具类、线程池的工厂类,用于创建并返回不同类型的线程池
//测试线程池
public class Testpool {
public static void main(String[] args) {
//1.创建一个线程池
//参数为线程池的大小
ExecutorService service = Executors.newFixedThreadPool(10);
//2.开始线程
service.execute(new MyThread());
service.execute(new MyThread());
service.execute(new MyThread());
service.execute(new MyThread());
//3.关闭连接
service.shutdown();
}
}
class MyThread implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName());
}
}