原理
AdaBoost,是英文"Adaptive Boosting"(自适应增强)的缩写,由Yoav Freund和Robert Schapire在1995年提出。它的自适应在于:前一个基本分类器分错的样本会得到加强,加权后的全体样本再次被用来训练下一个基本分类器。同时,在每一轮中加入一个新的弱分类器,直到达到某个预定的足够小的错误率或达到预先指定的最大迭代次数。
整个Adaboost 迭代算法就3步:
- 初始化训练数据的权值分布。如果有N个样本,则每一个训练样本最开始时都被赋予相同的权值:1/N。
- 训练弱分类器。具体训练过程中,如果某个样本点已经被准确地分类,那么在构造下一个训练集中,它的权值就被降低;相反,如果某个样本点没有被准确地分类,那么它的权值就得到提高。然后,权值更新过的样本集被用于训练下一个分类器,整个训练过程如此迭代地进行下去。
- 将各个训练得到的弱分类器组合成强分类器。各个弱分类器的训练过程结束后,加大分类误差率小的弱分类器的权重,使其在最终的分类函数中起着较大的决定作用,而降低分类误差率大的弱分类器的权重,使其在最终的分类函数中起着较小的决定作用。换言之,误差率低的弱分类器在最终分类器中占的权重较大,否则较小。
AdaBoost可以表示为基分类器的线性组合:
H
(
x
)
=
∑
i
=
1
N
α
i
h
i
(
x
)
H(\boldsymbol{x})=\sum_{i=1}^{N} \alpha_{i} h_{i}(\boldsymbol{x})
H(x)=i=1∑Nαihi(x)
其中
h
i
(
x
)
,
i
=
1
,
2
,
.
.
.
h_i(x),i=1,2,...
hi(x),i=1,2,...表示基分类器,
α
i
\alpha_i
αi是每个基分类器对应的权重,表示如下:
α
i
=
1
2
ln
(
1
−
ϵ
i
ϵ
i
)
\alpha_{i}=\frac{1}{2} \ln \left(\frac{1-\epsilon_{i}}{\epsilon_{i}}\right)
αi=21ln(ϵi1−ϵi)
其中
ϵ
i
\epsilon_{i}
ϵi是每个弱分类器的错误率。
实战一
from sklearn.ensemble import AdaBoostClassifier
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn import metrics
iris = datasets.load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
print(f"训练数据量:{len(X_train)},测试数据量:{len(X_test)}")
# 定义模型
model = AdaBoostClassifier(n_estimators=50,learning_rate=1.5)
# 训练
model.fit(X_train, y_train)
# 预测
y_pred = model.predict(X_test)
acc = metrics.accuracy_score(y_test, y_pred) # 准确率
print(f"准确率:{acc:.2}")
训练数据量:120,测试数据量:30
准确率:0.93
实战二
import pandas as pd
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.model_selection import GridSearchCV
import matplotlib.pyplot as plt
wine = load_wine()
print(f"所有特征:{wine.feature_names}")
X = pd.DataFrame(wine.data, columns=wine.feature_names)
y = pd.Series(wine.target)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=1)
所有特征:['alcohol', 'malic_acid', 'ash', 'alcalinity_of_ash', 'magnesium', 'total_phenols', 'flavanoids', 'nonflavanoid_phenols', 'proanthocyanins', 'color_intensity', 'hue', 'od280/od315_of_diluted_wines', 'proline']
base_model = DecisionTreeClassifier(max_depth=1, criterion='gini',random_state=1).fit(X_train, y_train)
y_pred = base_model.predict(X_test)
print(f"决策树的准确率:{accuracy_score(y_test,y_pred):.3f}")
决策树的准确率:0.694
from sklearn.ensemble import AdaBoostClassifier
model = AdaBoostClassifier(base_estimator=base_model,
n_estimators=50,
learning_rate=0.5,
algorithm='SAMME.R',
random_state=1)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print(f"AdaBoost的准确率:{accuracy_score(y_test,y_pred):.3f}")
AdaBoost的准确率:0.972
测试估计器个数的影响
x = list(range(2, 102, 2))
y = []
for i in x:
model = AdaBoostClassifier(base_estimator=base_model,
n_estimators=i,
learning_rate=0.5,
algorithm='SAMME.R',
random_state=1)
model.fit(X_train, y_train)
model_test_sc = accuracy_score(y_test, model.predict(X_test))
y.append(model_test_sc)
plt.style.use('ggplot')
plt.title("Effect of n_estimators", pad=20)
plt.xlabel("Number of base estimators")
plt.ylabel("Test accuracy of AdaBoost")
plt.plot(x, y)
plt.show()
测试学习率的影响
x = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
y = []
for i in x:
model = AdaBoostClassifier(base_estimator=base_model,
n_estimators=50,
learning_rate=i,
algorithm='SAMME.R',
random_state=1)
model.fit(X_train, y_train)
model_test_sc = accuracy_score(y_test, model.predict(X_test))
y.append(model_test_sc)
plt.title("Effect of learning_rate", pad=20)
plt.xlabel("Learning rate")
plt.ylabel("Test accuracy of AdaBoost")
plt.plot(x, y)
plt.show()
使用GridSearchCV自动调参
hyperparameter_space = {'n_estimators':list(range(2, 102, 2)),
'learning_rate':[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]}
gs = GridSearchCV(AdaBoostClassifier(base_estimator=base_model,
algorithm='SAMME.R',
random_state=1),
param_grid=hyperparameter_space,
scoring="accuracy", n_jobs=-1, cv=5)
gs.fit(X_train, y_train)
print("最优超参数:", gs.best_params_)
最优超参数: {'learning_rate': 0.8, 'n_estimators': 42}