朴素贝叶斯分类常用于文本分类,尤其是对于英文等语言来说,分类效果很好。它常用于垃圾文本过滤、情感预测、推荐系统等。
朴素贝叶斯
第一阶段:准备阶段
在这个阶段我们需要确定特征属性,同时明确预测值是什么。并对每个特征属性进行适当划分,然后由人工对一部分数据进行分类,形成训练样本。这一阶段是整个朴素贝叶斯分类中唯一需要人工完成的阶段,其质量对整个过程将有重要影响,分类器的质量很大程度上由特征属性、特征属性划分及训练样本质量决定。
第二阶段:训练阶段
这个阶段就是生成分类器,主要工作是计算每个类别在训练样本中的出现频率及每个特征属性划分对每个类别的条件概率。输入是特征属性和训练样本,输出是分类器。
第三阶段:应用阶段
这个阶段是使用分类器对新数据进行分类。输入是分类器和新数据,输出是新数据的分类结果。
贝叶斯算法的优缺点
优点:
(1)朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。
(2)对小规模的数据表现很好,能个处理多分类任务,适合增量式训练,尤其是数据量超出内存时,我们可以一批批的去增量训练。
(3)对缺失数据不太敏感,算法也比较简单,常用于文本分类。
缺点:
(1)理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型给定输出类别的情况下,假设属性之间相互独立,这个假设在实际应用中往往是不成立的,在属性个数比较多或者属性之间相关性较大时,分类效果不好。而在属性相关性较小时,朴素贝叶斯性能最为良好。对于这一点,有半朴素贝叶斯之类的算法通过考虑部分关联性适度改进。
(2)需要知道先验概率,且先验概率很多时候取决于假设,假设的模型可以有很多种,因此在某些时候会由于假设的先验模型的原因导致预测效果不佳。
(3)由于我们是通过先验和数据来决定后验的概率从而决定分类,所以分类决策存在一定的错误率。
(4)对输入数据的表达形式很敏感。
代码使用
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()
生成随机数据
from sklearn.datasets import make_blobs
# make_blobs:为聚类产生数据集
# n_samples:样本点数,n_features:数据的维度,centers:产生数据的中心点,默认值3
# cluster_std:数据集的标准差,浮点数或者浮点数序列,默认值1.0,random_state:随机种子
X, y = make_blobs(n_samples = 100, n_features=2, centers=2, random_state=2, cluster_std=1.5)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='RdBu')
plt.show()
from sklearn.naive_bayes import GaussianNB
model = GaussianNB()
model.fit(X, y)
rng = np.random.RandomState(0)
X_test = [-6, -14] + [14, 18] * rng.rand(2000, 2)
y_pred = model.predict(X_test)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='RdBu')
lim = plt.axis()
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_pred, s=20, cmap='RdBu', alpha=0.1)
plt.axis(lim)
plt.show()
预测
yprob = model.predict_proba(X_test)
yprob[-8:].round(2)
array([[0.89, 0.11],
[1. , 0. ],
[1. , 0. ],
[1. , 0. ],
[1. , 0. ],
[1. , 0. ],
[0. , 1. ],
[0.15, 0.85]])