继续巩固PointNet++代码的实现这篇博客,把代码逐行注释一遍!
pointnet++的所有代码和数据集都在github上,Pytorch代码:https://github.com/yanx27/Pointnet2_pytorch
深度学习中数据预处理provider.py部分的python代码注释如下:
import numpy as np
# 归一化batch_data,使用以centroid为中心的块的坐标
def normalize_data(batch_data):
""" Normalize the batch data, use coordinates of the block centered at origin,
Input:
BxNxC array
Output:
BxNxC array
"""
B, N, C = batch_data.shape
normal_data = np.zeros((B, N, C))
for b in range(B):
pc = batch_data[b]
centroid = np.mean(pc, axis=0)
pc = pc - centroid
m = np.max(np.sqrt(np.sum(pc ** 2, axis=1)))
pc = pc / m
normal_data[b] = pc
return normal_data
# 打乱数据(有相应标签)
def shuffle_data(data, labels):
""" Shuffle data and labels.
Input:
data: B,N,... numpy array
label: B,... numpy array
Return:
shuffled data, label and shuffle indices
"""
# arange创建等差数列,0到最大值,也就是labels的编号
idx = np.arange(len(labels))
# 随机打乱idx
np.random.shuffle(idx)
return data[idx, ...], labels[idx], idx
# 打乱每个点云中的点顺序-用于更改FPS行为。对整个batch使用想用的打乱索引|idx
def shuffle_points(batch_data):
""" Shuffle orders of points in each point cloud -- changes FPS behavior.
Use the same shuffling idx for the entire batch.
Input:
BxNxC array
Output:
BxNxC array
"""
idx = np.arange(batch_data.shape[1])
np.random.shuffle(idx)
return batch_data[:,idx,:]
# 随机旋转点云进行数据集增广;每个形状沿向上方向旋转
def rotate_point_cloud(batch_data):
""" Randomly rotate the point clouds to augument the dataset
rotation is per shape based along up direction
Input:
BxNx3 array, original batch of point clouds
Return:
BxNx3 array, rotated batch of point clouds
"""
# 根据batch_data的矩阵结构,构造一个元素都是0的矩阵
rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
for k in range(batch_data.shape[0]):
# 产生0-1之间的随机数,乘以2*np.pi,得到一个角度
rotation_angle = np.random.uniform() * 2 * np.pi
# 求此角度的cos和sin
cosval = np.cos(rotation_angle)
sinval = np.sin(rotation_angle)
# 然后组成一个3*3的旋转矩阵
rotation_matrix = np.array([[cosval, 0, sinval],
[0, 1, 0],
[-sinval, 0, cosval]])
# 一个shape_pc内是把batch_data切成多个3元素数组
shape_pc = batch_data[k, ...]
# 旋转点云数据:乘向上旋转矩阵
rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix)
return rotated_data
#沿着z轴旋转点云做数据增强
def rotate_point_cloud_z(batch_data):
""" Randomly rotate the point clouds to augument the dataset
rotation is per shape based along up direction
Input:
BxNx3 array, original batch of point clouds
Return:
BxNx3 array, rotated batch of point clouds
"""
rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
for k in range(batch_data

本文详细介绍了PointNet++模型中的数据预处理方法,包括点云数据的归一化、打乱、旋转及抖动等操作,这些操作有助于提高模型的泛化能力。
最低0.47元/天 解锁文章
2369

被折叠的 条评论
为什么被折叠?



