cuda 11情况下如何配置pytorch 10.2

该博客指导如何在Ubuntu系统中将CUDA从11.0降级到10.2,以适应PyTorch 10.2版本的需求。首先卸载CUDA 11.1,然后下载并安装CUDA 10.2及驱动。接着,安装cudnn并测试CUDA是否正常工作。最后,通过官方渠道下载并安装PyTorch,验证其GPU可用性。整个过程详述了每个步骤,确保PyTorch能在CUDA 10.2环境下顺利运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

由于目前pytorch只能支持到10.2的版本,但ubuntu最新的系统驱动直接支持了cuda 11.0, 并且cuda tooklit支持的默认下载也是11.0。

1. 需要先降低cuda tooklit的版本

cuda-uninstaller in /usr/local/cuda-11.1/bin
sudo rm -rf /usr/local/cuda-11.1

来自:Nidia

cd /usr/local/cuda-11.0/bin/
sudo ./cuda-uninstaller
sudo rm -rf /usr/local/cuda-11.1

来自:NVIDIA CUDA Toolkit 11.0 安装与卸载(Linux/Ubuntu)

2. 之后下载安装cuda 10.2:

下载地址:
CUDA Toolkit 10.2 Download

在这里插入图片描述

wget http://developer.download.nvidia.com/compute/cuda/10.2/Prod/local_installers/cuda_10.2.89_440.33.01_linux.runsudo sh cuda_10.2.89_440.33.01_linux.run

3. 只安装驱动外的其他内容,安装结束后测试是否成功:

cd /usr/local/cuda-10.2/samples/1_Utilities/deviceQuery
sudo make
sudo ./deviceQuery

出现PASS,代表没有问题

4. 安装cudnn
官网选择适合自己的版本,有两种可选:
在这里插入图片描述
在这里插入图片描述
此处我选择的第二个,下载这三个文件:

在这里插入图片描述
之后使用命令安装:

sudo dpkg -i libcudnn7_7.6.5.32-1+cuda10.2_amd64.deb
sudo dpkg -i libcudnn7-dev_7.6.5.32-1+cuda10.2_amd64.deb
sudo dpkg -i libcudnn7-doc_7.6.5.32-1+cuda10.2_amd64.deb

5. 安装pytorch
官网选择即可,如果网速慢可参考另一篇文档
在这里插入图片描述
网速比较快,出现下面的内容说明配置正确:
在这里插入图片描述

6. 测试
输入命令:

python
>>> import torch
>>> torch.cuda.is_available()

在这里插入图片描述
完结撒花!

参考:
NVIDIA CUDA Toolkit 11.0 安装与卸载(Linux/Ubuntu)
pytorch
cuDNN Archive
CUDA Toolkit 10.2 Download
Ubuntu18.04下安装pytorch详细步骤

自编译tensorflow: 1.python3.5,tensorflow1.12; 2.支持cuda10.0,cudnn7.3.1,TensorRT-5.0.2.6-cuda10.0-cudnn7.3; 3.无mkl支持; 软硬件硬件环境:Ubuntu16.04,GeForce GTX 1080 TI 配置信息: hp@dla:~/work/ts_compile/tensorflow$ ./configure WARNING: --batch mode is deprecated. Please instead explicitly shut down your Bazel server using the command "bazel shutdown". You have bazel 0.19.1 installed. Please specify the location of python. [Default is /usr/bin/python]: /usr/bin/python3 Found possible Python library paths: /usr/local/lib/python3.5/dist-packages /usr/lib/python3/dist-packages Please input the desired Python library path to use. Default is [/usr/local/lib/python3.5/dist-packages] Do you wish to build TensorFlow with XLA JIT support? [Y/n]: XLA JIT support will be enabled for TensorFlow. Do you wish to build TensorFlow with OpenCL SYCL support? [y/N]: No OpenCL SYCL support will be enabled for TensorFlow. Do you wish to build TensorFlow with ROCm support? [y/N]: No ROCm support will be enabled for TensorFlow. Do you wish to build TensorFlow with CUDA support? [y/N]: y CUDA support will be enabled for TensorFlow. Please specify the CUDA SDK version you want to use. [Leave empty to default to CUDA 10.0]: Please specify the location where CUDA 10.0 toolkit is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: /usr/local/cuda-10.0 Please specify the cuDNN version you want to use. [Leave empty to default to cuDNN 7]: 7.3.1 Please specify the location where cuDNN 7 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda-10.0]: Do you wish to build TensorFlow with TensorRT support? [y/N]: y TensorRT support will be enabled for TensorFlow. Please specify the location where TensorRT is installed. [Default is /usr/lib/x86_64-linux-gnu]://home/hp/bin/TensorRT-5.0.2.6-cuda10.0-cudnn7.3/targets/x86_64-linux-gnu Please specify the locally installed NCCL version you want to use. [Default is to use https://github.com/nvidia/nccl]: Please specify a list of comma-separated Cuda compute capabilities you want to build with. You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus. Please note that each additional compute capability significantly increases your build time and binary size. [Default is: 6.1,6.1,6.1]: Do you want to use clang as CUDA compiler? [y/N]: nvcc will be used as CUDA compiler. Please specify which gcc should be used by nvcc as the host compiler. [Default is /usr/bin/gcc]: Do you wish to build TensorFlow with MPI support? [y/N]: No MPI support will be enabled for TensorFlow. Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native -Wno-sign-compare]: Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]: Not configuring the WORKSPACE for Android builds. Preconfigured Bazel build configs. You can use any of the below by adding "--config=" to your build command. See .bazelrc for more details. --config=mkl # Build with MKL support. --config=monolithic # Config for mostly static monolithic build. --config=gdr # Build with GDR support. --config=verbs # Build with libverbs support. --config=ngraph # Build with Intel nGraph support. --config=dynamic_kernels # (Experimental) Build kernels into separate shared objects. Preconfigured Bazel build configs to DISABLE default on features: --config=noaws # Disable AWS S3 filesystem support. --config=nogcp # Disable GCP support. --config=nohdfs # Disable HDFS support. --config=noignite # Disable Apacha Ignite support. --config=nokafka # Disable Apache Kafka support. --config=nonccl # Disable NVIDIA NCCL support. Configuration finished 编译: bazel build --config=opt --verbose_failures //tensorflow/tools/pip_package:build_pip_package 卸载已有tensorflow: hp@dla:~/temp$ sudo pip3 uninstall tensorflow 安装自己编译的成果: hp@dla:~/temp$ sudo pip3 install tensorflow-1.12.0-cp35-cp35m-linux_x86_64.whl
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值