
法一:层数和节点一起入队
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<vector<int>> levelOrder(TreeNode* root) {
queue<pair<TreeNode*, int>> q;
vector<vector<int>> res;
if(root != NULL) q.push({root, 0});
while(!q.empty()){
TreeNode* node = q.front().first;
int level = q.front().second;
if(node -> left) q.push({node -> left, level + 1});
if(node -> right) q.push({node -> right, level + 1});
q.pop();
if(res.size() < level + 1) res.push_back({}); //拓展一行
res[level].emplace_back(node -> val);
}
return res;
}
};
法二:在每一层遍历开始前,先记录队列中的结点数量 (也就是这一层的结点数量),然后一口气处理完这一层的 n 个结点。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<vector<int>> levelOrder(TreeNode* root) {
queue<TreeNode*> q;
vector<vector<int>> res;
if(root != NULL) q.push(root);
while(!q.empty()){
int size = q.size();
vector<int> vec;
for(int i = 0; i < size; ++i){
vec.emplace_back(q.front() -> val);
if(q.front() -> left) q.push(q.front() -> left);
if(q.front() -> right) q.push(q.front() -> right);
q.pop();
}
res.emplace_back(vec);
}
return res;
}
};
学习到的语法点:
- 创建一个空的vector:res.push_back(vector ()) 或 res.push_back({})