python神经网络使用Keras进行模型的保存与读取

一、Keras中保存与读取的重要函数

1、model.save

model.save用于保存模型,在保存模型前,首先要利用pip install安装h5py的模块,这个模块在Keras的模型保存与读取中常常被使用,用于定义保存格式。

pip install h5py

完成安装后,可以通过如下函数保存模型。

model.save("./model.hdf5")

其中,model是已经训练完成的模型,save函数传入的参数就是保存后的位置+名字。

2、load_model

load_model用于载入模型。

具体使用方式如下:

model = load_model("./model.hdf5")

其中,load_model函数传入的参数就是已经完成保存的模型的位置+名字。./表示保存在当前目录。

代码:

这是一个简单的手写体识别例子,在之前也讲解过如何构建

python神经网络学习使用Keras进行简单分类,在最后我添加上了模型的保存与读取函数。

import numpy as np
from keras.models import Sequential,load_model,save_model
from keras.layers import Dense,Activation ## 全连接层
from keras.datasets import mnist
from keras.utils import np_utils
from keras.optimizers import RMSprop
# 获取训练集
(X_train,Y_train),(X_test,Y_test) = mnist.load_data()
# 首先进行标准化 
X_train = X_train.reshape(X_train
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值