题目链接: P1505 [国家集训队]旅游
大致题意
给定一棵 n n n个节点的树, 边带权, 编号 0 0 0 ~ n − 1 n - 1 n−1, 需要支持五种操作:
C i w
将输入的第
i
i
i条边权值改为
w
w
w
N u v
将
u
,
v
u, v
u,v节点之间的边权都变为相反数
SUM u v
询问
u
,
v
u, v
u,v节点之间边权和
MAX u v
询问
u
,
v
u, v
u,v节点之间边权最大值
MIN u v
询问
u
,
v
u, v
u,v节点之间边权最小值
保证任意时刻所有边的权值都在 [ − 1000 , 1000 ] [-1000, 1000] [−1000,1000] 内。
解题思路
树链剖分 这不是树剖裸题吗?
我们首先需要把树中边权化为点权, 然后在线段树内维护区间和, 区间最大值, 区间最小值, 区间取反懒标记即可.
AC代码
#include <bits/stdc++.h>
#define rep(i, n) for (int i = 1; i <= (n); ++i)
using namespace std;
typedef long long ll;
const int N = 2E5 + 10, INF = 0x3f3f3f3f;
int w[N]; //给定的树中各个顶点的权值
struct EDGE { int a, b, c; }EG[N];
vector<int> edge[N]; //树上各个点之间的边
int p[N], dep[N], sz[N], son[N];
// 父节点 深度 节点大小 重儿子
void dfs1(int x = 1, int fa = 0) { // x = 树根节点
p[x] = fa, dep[x] = dep[fa] + 1, sz[x] = 1; // son[x] = 0;
for (auto& to : edge[x]) {
if (to == fa) continue;
dfs1(to, x);
sz[x] += sz[to]; // 特别的, 如果边权->点权, 应记录w[to] = 边权.
if (sz[to] > sz[son[x]]) son[x] = to; //更新重儿子
}
}
int id[N], nw[N], top[N], ind;
// 新编号 新值 重链顶 当前用到的编号
void dfs2(int x = 1, int tp = 1) { // x = 树根节点, tp = 树根节点
id[x] = ++ind, nw[ind] = w[x], top[x] = tp;
if (!son[x]) return; //叶子结点
dfs2(son[x], tp); //先遍历重儿子
for (auto& to : edge[x]) {
if (to == p[x] or to == son[x]) continue;
dfs2(to, to);
}
}
struct node {
int l, r;
int sum, fmax, fmin;
int flag; // 1
}t[N << 2];
void pushdown(node& op, int) {
op.sum = -op.sum;
op.fmax = -op.fmax, op.fmin = -op.fmin, swap(op.fmax, op.fmin);
op.flag *= -1;
}
void pushdown(int x) {
if (t[x].flag == 1) return;
pushdown(t[x << 1], 1), pushdown(t[x << 1 | 1], 1);
t[x].flag = 1;
}
void pushup(node& p, node& l, node& r) {
p.sum = l.sum + r.sum;
p.fmax = max(l.fmax, r.fmax), p.fmin = min(l.fmin, r.fmin);
}
void pushup(int x) { pushup(t[x], t[x << 1], t[x << 1 | 1]); }
void build(int l, int r, int x = 1) {
t[x] = { l, r, nw[l], nw[l], nw[l], 1 };
if (l == r) return;
int mid = l + r >> 1;
build(l, mid, x << 1), build(mid + 1, r, x << 1 | 1);
pushup(x);
}
void modify(int l, int r, int c, int x = 1) {
if (l <= t[x].l and r >= t[x].r) {
if (c == INF) pushdown(t[x], 1);
else t[x].sum = t[x].fmax = t[x].fmin = c;
return;
}
pushdown(x);
int mid = t[x].l + t[x].r >> 1;
if (l <= mid) modify(l, r, c, x << 1);
if (r > mid) modify(l, r, c, x << 1 | 1);
pushup(x);
}
node ask(int l, int r, int x = 1) {
if(l <= t[x].l and r >= t[x].r) return t[x];
pushdown(x);
int mid = t[x].l + t[x].r >> 1;
if (r <= mid) return ask(l, r, x << 1);
if (l > mid) return ask(l, r, x << 1 | 1);
node left = ask(l, r, x << 1), right = ask(l, r, x << 1 | 1);
node res = { left.l, right.r }; pushup(res, left, right);
return res;
}
void modify_route(int a, int b) {
while (top[a] != top[b]) {
if (dep[top[a]] < dep[top[b]]) swap(a, b);
modify(id[top[a]], id[a], INF);
a = p[top[a]];
}
if (a == b) return;
if (id[a] > id[b]) swap(a, b);
modify(id[son[a]], id[b], INF);
}
node ask_route(int a, int b) {
node res = { 0, 0, 0, INT_MIN, INT_MAX, 1 };
while (top[a] != top[b]) {
if (dep[top[a]] < dep[top[b]]) swap(a, b);
node qaq = ask(id[top[a]], id[a]);
res.fmax = max(res.fmax, qaq.fmax), res.fmin = min(res.fmin, qaq.fmin);
res.sum += qaq.sum;
a = p[top[a]];
}
if (a == b) return res;
if (dep[a] > dep[b]) swap(a, b);
node qaq = ask(id[son[a]], id[b]);
res.fmax = max(res.fmax, qaq.fmax), res.fmin = min(res.fmin, qaq.fmin);
res.sum += qaq.sum;
return res;
}
int main()
{
int n; cin >> n;
rep(i, n - 1) {
int a, b, c; scanf("%d %d %d", &a, &b, &c); a++, b++;
edge[a].push_back(b), edge[b].push_back(a);
EG[i] = { a, b, c };
}
dfs1();
rep(i, n - 1) {
auto& [a, b, c] = EG[i];
if (dep[a] < dep[b]) swap(a, b);
w[a] = c;
}
dfs2();
build(1, n);
int m; cin >> m;
rep(i, m) {
char s[5]; scanf("%s", s);
if (*s == 'C') {
int x, c; scanf("%d %d", &x, &c);
int a = EG[x].a;
modify(id[a], id[a], c);
}
else if (*s == 'N') {
int a, b; scanf("%d %d", &a, &b); a++, b++;
modify_route(a, b);
}
else {
int a, b; scanf("%d %d", &a, &b); a++, b++;
auto qaq = ask_route(a, b);
if (*s == 'S') printf("%d\n", qaq.sum);
else if (s[1] == 'A') printf("%d\n", qaq.fmax);
else printf("%d\n", qaq.fmin);
}
}
return 0;
}