##题意:
现在给你一个卧室的平面图,卧室里有0到18堵墙(垂直于x轴的)
固定起点(0,5),终点(10,5)
在不经过墙的情况下,要求你求出起点到终点的最短路线
##思考:
首先题目很好理解,即在不撞到墙的情况下从求起点到终点的最短路线
首先可以知道,两点之间直线最短,
所以最优路线要么是一条直线(起点终点之间没有墙阻挡)
要么就是经过某些墙的端点的线段拼接而成(为什么是端点?加入线段不经过端点,比如说从两墙之间的空
白穿过,那么线段总可以向上或向下倾斜到墙的端点处,从而长度更小)
可以这样想,线段的起点已经固定(起点不一定是(0,5)),而线段的终点在垂直于x轴的墙所在的直线上某点,由于对称性可知
线段取最小值是线段的终点于起点平行于x轴,如果不能平行(被墙挡住),那么越靠近这条平行轴,线段的长度越短,
而这种最短的极端情况只能在墙的端点处取得。
一开始我的思路是dp,以墙来分层,可知起点到终点间有n层,每层有3面墙,那么通过当前层的某个端点的最短路线
1 要么是当前层上墙的这个端点可以直接到起点的线段长(如果存在)
2 要么是该端点到可以直接到达之前墙上的某端点的线段,加上起点到这线段的距离(即多个线段长度相加)
//其实我个人感觉这个算法在时间复杂度上几乎和暴力求解无异(因为数据非常小,可以暴力过),需要注意的是第二点:
//直接到达非常重要,因为如果单纯枚举每层端点的最小值相加,结果会比最优解大,因为如果当前层和前面2层,3层甚至是很多层的某个墙的端点可以直接相连,那么从这两点之间的最小距离明显是这条直接连线的长度
#具体代码
##主函数实现部分
int n,wall_index;
double dp[200][200];/*dp数组的含义是:dp[i][n]
是起点到第i层的第n个墙的端点的最短距离
每层墙只有4个端点
*/
Line walls[300][40];
/*
Line 是线的类,具体实现后面的计算几何模板会有
walls[i][n]的意思是第i层墙的第n个墙
*/
Point points[300][40];
/*
Point 是点的类
points[i][n]的意思是第i层墙的第n个端点
*/
Point start_point;//起点
Line temp_path;
bool is_cross(Line ttt,int nn,int index2)//判断ttt这条线是否与第index2层墙到第nn层墙之间的某个墙有交点
//有交点即不能直接相连,且因为线段是从index2层到nn层墙之间,所以只判断这部分的墙的端点
{
for(int i=index2;i<nn;i++)
{
for(int u=0;u<3;u++)
if(ttt.linecrossseg(walls[i][u])>0) return false;
//Line 类的函数 linecrossseg是判断线是否与线段wall[i][u]相交
}
return true;
}
void get_dis(int pre,int index)//pre是当前墙端点所在的层数,index是当前墙端点所在层的序号
{
Line temp;
temp.e=points[pre][index];//temp.e 是线段的终点,temp.s是线段的起点
temp.s=start_point;
if(is_cross(temp,pre,0))//如果当前端点能和起点直接相连,那么最短距离就是两点距离
{
dp[pre][index]=dis(start_point.x,start_point.y,temp.e.x,temp.e.y);return ;
// 求两点距离,并返回
//dis函数为求两点距离的函数,后面几何模板会有
}
for(int u=0;u<pre;u++)//如果不能直接和起点相连,则遍历之前的点寻找从起点到该点的最短距离
for(int i=0;i<4;i++)
{
temp.s=points[u][i];//注意是 s
if(is_cross(temp,pre,u+1)) //判断遍历到的某个端点points[u][i] 与当前端点points[pre][index]是否能直接相连
//能的话就比较此时的距离是否比 dp[pre][index]小,小的话就刷新dp[pre][index]
dp[pre][index]=min(dp[pre][index],dp[u][i]+
dis(points[u][i].x,points[u][i].y,
points[pre][index].x,points[pre][index].y));
}
}
void get_ans()//从0daon-1遍历墙的端点,并刷新距离最小值
{
for(int i=0;i<n;i++)
{
for(int u=0;u<4;u++)
get_dis(i,u);
}
get_dis(n,0);//最后将起点作为第n层墙的端点,遍历最后一次
}
int main()
{
double x,y1,y2,y3,y4;
start_point.x=0;
start_point.y=5;
while(scanf("%d",&n))
{
if(n==-1) break;
wall_index=n;
for(int i=0;i<30;i++)
for(int u=0;u<20;u++)
dp[i][u]=100000;
//printf("%f))\n",dp[n][0]);
for(int i=0;i<n;i++)
{
scanf("%lf%lf%lf%lf%lf",&x,&y1,&y2,&y3,&y4);
walls[i][2].s.x=walls[i][2].e.x=
walls[i][1].s.x= walls[i][1].e.x=
walls[i][0].s.x= walls[i][0].e.x=x;
walls[i][0].s.y=0;
walls[i][0].e.y=y1;//这部分是walls数组和points数组的数据读入
walls[i][1].s.y=y2;
walls[i][1].e.y=y3;
walls[i][2].s.y=y4;
walls[i][2].e.y=10;
points[i][0]=walls[i][0].e;
points[i][1]=walls[i][1].s;
points[i][2]=walls[i][1].e;
points[i][3]=walls[i][2].s;
}
points[n][0].x=10;//将终点设置为第n层墙的第0个端点
points[n][0].y=5;
get_ans();
printf("%.2f\n",dp[n][0]);
//依据dp数组意思,最优解存在dp[n][0] 即起点到终点的最短距离
}
}
##所用到的计算几何模板部分
// `计算几何模板`
const double eps = 1e-8;
const double pi = acos(-1.0);
const int maxp = 1010;
//`Compares a double to zero`
int sgn(double x){
if(fabs(x) < eps)return 0;
if(x < 0)return -1;
else return 1;
}
double dis(double x1,double y1,double x2,double y2){
return sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));
}
//在建立直线时,需要特判两个点是否构成一个线段
//square of a double
inline double sqr(double x){return x*x;}
/*
* Point
* Point() - Empty constructor
* Point(double _x,double _y) - constructor
* input() - double input
* output() - %.2f output
* operator == - compares x and y
* operator < - compares first by x, then by y
* operator - - return new Point after subtracting curresponging x and y
* operator ^ - cross product of 2d points
* operator * - dot product
* len() - gives length from origin
* len2() - gives square of length from origin
* distance(Point p) - gives distance from p
* operator + Point b - returns new Point after adding curresponging x and y
* operator * double k - returns new Point after multiplieing x and y by k
* operator / double k - returns new Point after divideing x and y by k
* rad(Point a,Point b)- returns the angle of Point a and Point b from this Point
* trunc(double r) - return Point that if truncated the distance from center to r
* rotleft() - returns 90 degree ccw rotated point
* rotright() - returns 90 degree cw rotated point
* rotate(Point p,double angle) - returns Point after rotateing the Point centering at p by angle radian ccw
*/
struct Point{
double x,y;
Point(){}
Point(double _x,double _y){
x = _x;
y = _y;
}
void input(){
scanf("%lf%lf",&x,&y);
}
void output(){
printf("%.2f %.2f\n",x,y);
}
bool operator == (Point b)const{
return sgn(x-b.x) == 0 && sgn(y-b.y) == 0;
}
bool operator < (Point b)const{
return sgn(x-b.x)== 0?sgn(y-b.y)<0:x<b.x;
}
Point operator -(const Point &b)const{
return Point(x-b.x,y-b.y);
}
//叉积
double operator ^(const Point &b)const{
return x*b.y - y*b.x;
}
//点积
double operator *(const Point &b)const{
return x*b.x + y*b.y;
}
//返回长度
double len(){
return hypot(x,y);//库函数
}
//返回长度的平方
double len2(){
return x*x + y*y;
}
//返回两点的距离
double distance(Point p){
return hypot(x-p.x,y-p.y);
}
Point operator +(const Point &b)const{
return Point(x+b.x,y+b.y);
}
Point operator *(const double &k)const{
return Point(x*k,y*k);
}
Point operator /(const double &k)const{
return Point(x/k,y/k);
}
//`计算pa 和 pb 的夹角`
//`就是求这个点看a,b 所成的夹角`
//`测试 LightOJ1203`
double rad(Point a,Point b){
Point p = *this;
return fabs(atan2( fabs((a-p)^(b-p)),(a-p)*(b-p) ));
}
//`化为长度为r的向量`
Point trunc(double r){
double l = len();
if(!sgn(l))return *this;
r /= l;
return Point(x*r,y*r);
}
//`逆时针旋转90度`
Point rotleft(){
return Point(-y,x);
}
//`顺时针旋转90度`
Point rotright(){
return Point(y,-x);
}
//`绕着p点逆时针旋转angle`
Point rotate(Point p,double angle){
Point v = (*this) - p;
double c = cos(angle), s = sin(angle);
return Point(p.x + v.x*c - v.y*s,p.y + v.x*s + v.y*c);
}
};
/*
* Stores two points
* Line() - Empty constructor
* Line(Point _s,Point _e) - Line through _s and _e
* operator == - checks if two points are same
* Line(Point p,double angle) - one end p , another end at angle degree
* Line(double a,double b,double c) - Line of equation ax + by + c = 0
* input() - inputs s and e
* adjust() - orders in such a way that s < e
* length() - distance of se
* angle() - return 0 <= angle < pi
* relation(Point p) - 3 if point is on line
* 1 if point on the left of line
* 2 if point on the right of line
* pointonseg(double p) - return true if point on segment
* parallel(Line v) - return true if they are parallel
* segcrossseg(Line v) - returns 0 if does not intersect
* returns 1 if non-standard intersection
* returns 2 if intersects
* linecrossseg(Line v) - line and seg
* linecrossline(Line v) - 0 if parallel
* 1 if coincides
* 2 if intersects
* crosspoint(Line v) - returns intersection point
* dispointtoline(Point p) - distance from point p to the line
* dispointtoseg(Point p) - distance from p to the segment
* dissegtoseg(Line v) - distance of two segment
* lineprog(Point p) - returns projected point p on se line
* symmetrypoint(Point p) - returns reflection point of p over se
*
*/
struct Line{
Point s,e;
Line(){}
Line(Point _s,Point _e){
s = _s;
e = _e;
}
bool operator ==(Line v){
return (s == v.s)&&(e == v.e);
}
//`根据一个点和倾斜角angle确定直线,0<=angle<pi`
Line(Point p,double angle){
s = p;
if(sgn(angle-pi/2) == 0){
e = (s + Point(0,1));
}
else{
e = (s + Point(1,tan(angle)));
}
}
//ax+by+c=0
Line(double a,double b,double c){
if(sgn(a) == 0){
s = Point(0,-c/b);
e = Point(1,-c/b);
}
else if(sgn(b) == 0){
s = Point(-c/a,0);
e = Point(-c/a,1);
}
else{
s = Point(0,-c/b);
e = Point(1,(-c-a)/b);
}
}
void input(){
s.input();
e.input();
}
void adjust(){
if(e < s)swap(s,e);
}
//求线段长度
double length(){
return s.distance(e);
}
//`返回直线倾斜角 0<=angle<pi`
double angle(){
double k = atan2(e.y-s.y,e.x-s.x);
if(sgn(k) < 0)k += pi;
if(sgn(k-pi) == 0)k -= pi;
return k;
}
//`点和直线关系`
//`1 在左侧`
//`2 在右侧`
//`3 在直线上`
int relation(Point p){
int c = sgn((p-s)^(e-s));
if(c < 0)return 1;
else if(c > 0)return 2;
else return 3;//c==0
}
// 点在线段上的判断
bool pointonseg(Point p){
return sgn((p-s)^(e-s)) == 0 && sgn((p-s)*(p-e)) <= 0;
}
//`两向量平行(对应直线平行或重合)`
bool parallel(Line v){
return sgn((e-s)^(v.e-v.s)) == 0;
}
//`两线段相交判断`
//`2 规范相交`
//`1 非规范相交`
//`0 不相交`
int segcrossseg(Line v){
int d1 = sgn((e-s)^(v.s-s));
int d2 = sgn((e-s)^(v.e-s));
int d3 = sgn((v.e-v.s)^(s-v.s));
int d4 = sgn((v.e-v.s)^(e-v.s));
if( (d1^d2)==-2 && (d3^d4)==-2 )return 2;
return (d1==0 && sgn((v.s-s)*(v.s-e))<=0) ||
(d2==0 && sgn((v.e-s)*(v.e-e))<=0) ||
(d3==0 && sgn((s-v.s)*(s-v.e))<=0) ||
(d4==0 && sgn((e-v.s)*(e-v.e))<=0);
}
//`直线和线段相交判断`
//`-*this line -v seg`
//`2 规范相交`
//`1 非规范相交`
//`0 不相交`
int linecrossseg(Line v){
int d1 = sgn((e-s)^(v.s-s));
int d2 = sgn((e-s)^(v.e-s));
if((d1^d2)==-2) return 2;
return (d1==0||d2==0);
}
//`两直线关系`
//`0 平行`
//`1 重合`
//`2 相交`
int linecrossline(Line v){
if((*this).parallel(v))
return v.relation(s)==3;
return 2;
}
//`求两直线的交点`
//`要保证两直线不平行或重合`
//相似三角形证明!
Point crosspoint(Line v){
double a1 = (v.e-v.s)^(s-v.s);
double a2 = (v.e-v.s)^(e-v.s);
return Point((s.x*a2-e.x*a1)/(a2-a1),(s.y*a2-e.y*a1)/(a2-a1));
}
//点到直线的距离
double dispointtoline(Point p){
return fabs((p-s)^(e-s))/length();
}
//点到线段的距离
double dispointtoseg(Point p){
if(sgn((p-s)*(e-s))<0 || sgn((p-e)*(s-e))<0)
return min(p.distance(s),p.distance(e));
return dispointtoline(p);
}
//`返回线段到线段的距离`
//`前提是两线段不相交,相交距离就是0了`
double dissegtoseg(Line v){
return min(min(dispointtoseg(v.s),dispointtoseg(v.e)),min(v.dispointtoseg(s),v.dispointtoseg(e)));
}
//`返回点p在直线上的投影`
Point lineprog(Point p){
return s + ( ((e-s)*((e-s)*(p-s)))/((e-s).len2()) );
}
//`返回点p关于直线的对称点`
Point symmetrypoint(Point p){
Point q = lineprog(p);
return Point(2*q.x-p.x,2*q.y-p.y);
}
};