python_Sklearn基础

本文介绍了Python机器学习库Sklearn的基础知识,包括安装、数据获取与预处理、模型选择与优化、模型评估与保存。内容涵盖线性回归、逻辑回归、朴素贝叶斯、决策树、支持向量机、KNN、随机森林和多层感知机,并讨论了过拟合问题和参数优化方法,如使用贝叶斯优化寻找最佳参数组合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python_Sklearn基础

By:小橙
参考博客_1 参考博客_2

Scikit-learn(sklearn)是机器学习中常用的第三方模块,对常用的机器学习方法进行了封装,包括回归(Regression)、降维(Dimensionality Reduction)、分类(Classfication)、聚类(Clustering)等方法。当我们面临机器学习问题时,便可根据下图来选择相应的方法。Sklearn具有以下特点:

  • 简单高效的数据挖掘和数据分析工具
  • 让每个人能够在复杂环境中重复使用
  • 建立NumPy、Scipy、MatPlotLib之上
    在这里插入图片描述

Sklearn安装

pip install -U scikit-learn

获取数据

  • sklearn数据集
  • 创建数据集

sklearn数据集

from sklearn import datasets
iris = datasets.load_iris() # 导入数据集
X = iris.data # 获得其特征向量
y = iris.target # 获得样本label

创建数据集

from sklearn.datasets.samples_generator import make_classification

X, y = make_classification(n_samples=6, n_features=5, n_informative=2, n_redundant=2, n_classes=2, 
                           n_clusters_per_class=2,scale=1.0, random_state=20)
# n_samples: 指定样本数
# n_features:指定特征数
# n_classes: 指定几分类
# random_state:随机种子,使得随机状可重
print(X)
print(y)
[[-0.6600737  -0.0558978   0.82286793  1.1003977  -0.93493796]
 [ 0.4113583   0.06249216 -0.90760075 -1.41296696  2.059838  ]
 [ 1.52452016 -0.01867812  0.20900899  1.34422289 -1.61299022]
 [-1.25725859  0.02347952 -0.28764782 -1.32091378 -0.88549315]
 [-3.28323172  0.03899168 -0.43251277 -2.86249859 -1.10457948]
 [ 1.68841011  0.06754955 -1.02805579 -0.83132182  0.93286635]]
[0 1 1 0 0 1]
for x_,y_ in zip(X,y):
    print(y_,end=': ')
    print(x_)
0: [-0.6600737  -0.0558978   0.82286793  1.1003977  -0.93493796]
1: [ 0.4113583   0.06249216 -0.90760075 -1.41296696  2.059838  ]
1: [ 1.52452016 -0.01867812  0.20900899  1.34422289 -1.61299022]
0: [-1.25725859  0.02347952 -0.28764782 -1.32091378 -0.88549315]
0: [-3.28323172  0.03899168 -0.43251277 -2.86249859 -1.10457948]
1: [ 1.68841011  0.06754955 -1.02805579 -0.83132182  0.93286635]

数据预处理

  • 数据归一化
  • 正则化(normalize)
  • one-hot编码
from sklearn import preprocessing

数据归一化

data = [[0, 0], [0, 0], [1, 1], [1, 1]]
# 1. 基于mean和std的标准化
scaler = preprocessing.StandardScaler().fit(train_data)
scaler.transform(train_data)
scaler.transform(test_data)

# 2. 将每个特征值归一化到一个固定范围
scaler = preprocessing.MinMaxScaler(feature_range=(0, 1)).fit(train_data)
scaler.transform(train_data)
scaler.transform(test_data)
#feature_range: 定义归一化范围,注用()括起来

正则化(normalize)

X = [[ 1., -1.,  2.],
      [ 2.,  0.,  0.],
      [ 0.,  1., -1.]]
X_normalized = preprocessing.normalize(X, norm='l2')
X_normalized 
array([[ 0.40824829, -0.40824829,  0.81649658],
       [ 1.        ,  0.        ,  0.        ],
       [ 0.        ,  0.70710678, -0.70710678]])

one-hot编码

data = [[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]
encoder = preprocessing.OneHotEncoder().fit(data)
encoder.transform(data).toarray()
/Users/alpaca/anaconda3/lib/python3.7/site-packages/sklearn/preprocessing/_encoders.py:415: FutureWarning: The handling of integer data will change in version 0.22. Currently, the categories are determined based on the range [0, max(values)], while in the future they will be determined based on the unique values.
If you want the future behaviour and silence this warning, you can specify "categories='auto'".
In case you used a LabelEncoder before this OneHotEncoder to convert the categories to integers, then you can now use the OneHotEncoder directly.
  warnings.warn(msg, FutureWarning)





array([[1., 0., 1., 0., 0., 0., 0., 0., 1.],
       [0., 1., 0., 1., 0., 1., 0., 0., 0.],
       [1., 0., 0., 0., 1., 0., 1., 0., 0.],
       [0., 1., 1., 0., 0., 0., 0., 1., 0.]])

数据集拆分

# 作用:将数据集划分为 训练集和测试集
from sklearn.mode_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

定义模型

  • 线性回归
  • 逻辑回归LR
  • 朴素贝叶斯算法NB
  • 决策树DT
  • 支持向量机SVM
  • k近邻算法KNN
  • 随机森林RF
  • 多层感知机(神经网络)
# 拟合模型
model.fit(X_train, y_train)
# 模型预测
model.predict(X_test)
# 获得这个模型的参数
model.get_params()
# 为模型进行打分
model.score(data_X, data_y) # 线性回归:R square; 分类问题: acc

线性回归

from sklearn.linear_model import LinearRegression
# 定义线性回归模型
model = LinearRegression(fit_intercept=True, normalize=False, 
    copy_X=True, n_jobs=1)
"""参数
    fit_intercept:是否计算截距。False-模型没有截距
    normalize: 当fit_intercept设置为False时,该参数将被忽略。 如果为真,则回归前的回归系数X将通过减去平均值并除以l2-范数而归一化。
    n_jobs:指定线程数

逻辑回归LR

from sklearn.linear_model import LogisticRegression
# 定义逻辑回归模型
model = LogisticRegression(penalty=’l2’, dual=False, tol=0.0001, C=1.0, 
    fit_intercept=True, intercept_scaling=1, class_weight=None, 
    random_state=None, solver=’liblinear’, max_iter=100, multi_class=’ovr’, 
    verbose=0, warm_start=False, n_jobs=1)
"""参数
    penalty:使用指定正则化项(默认:l2)
    dual: n_samples > n_features取False(默认)
    C:正则化强度的反,值越小正则化强度越大
    n_jobs: 指定线程数
    random_state:随机数生成器
    fit_intercept: 是否需要常量

朴素贝叶斯算法NB

from sklearn import naive_bayes
model = naive_bayes.GaussianNB() # 高斯贝叶斯
model = naive_bayes.MultinomialNB(alpha=1.0, fit_prior=True, class_prior=None)
model = naive_bayes.BernoulliNB(alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None)
"""文本分类问题常用MultinomialNB
    参数
    alpha:平滑参数
    fit_prior:是否要学习类的先验概率;false-使用统一的先验概率
    class_prior: 是否指定类的先验概率;若指定则不能根据参数调整
    binarize: 二值化的阈值,若为None,则假设输入由二进制向量组成

决策树DT

from sklearn import tree 
model = tree.DecisionTreeClassifier(criterion=’gini’, max_depth=None, 
    min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, 
    max_features=None, random_state=None, max_leaf_nodes=None, 
    min_impurity_decrease=0.0, min_impurity_split=None,
     class_weight=None, presort=False)
"""参数
    criterion :特征选择准则gini/entropy
    max_depth:树的最大深度,None-尽量下分
    min_samples_split:分裂内部节点,所需要的最小样本树
    min_samples_leaf:叶子节点所需要的最小样本数
    max_features: 寻找最优分割点时的最大特征数
    max_leaf_nodes:优先增长到最大叶子节点数

支持向量机SVM

from sklearn.svm import SVC
model = SVC(C=1.0, kernel=’rbf’, gamma=’auto’)
"""参数
    C:误差项的惩罚参数C
    gamma: 核相关系数。浮点数,If gamma is ‘auto’ then 1/n_features will be used instead.

k近邻算法KNN

from sklearn import neighbors
#定义kNN分类模型
model = neighbors.KNeighborsClassifier(n_neighbors=5, n_jobs=1) # 分类
model = neighbors.KNeighborsRegressor(n_neighbors=5, n_jobs=1) # 回归
"""参数
    n_neighbors: 使用邻居的数目
    n_jobs:并行任务数

随机森林RF

from sklearn.tree import DecisionTreeClassifier
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
            max_depth=None, max_features='auto', max_leaf_nodes=None,
            min_samples_leaf=1, min_samples_split=2,
            min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
            oob_score=False, random_state=None, verbose=0,
            warm_start=False)

多层感知机(神经网络)

from sklearn.neural_network import MLPClassifier
# 定义多层感知机分类算法
model = MLPClassifier(activation='relu', solver='adam', alpha=0.0001)
"""参数
    hidden_layer_sizes: 元祖
    activation:激活函数
    solver :优化算法{‘lbfgs’, ‘sgd’, ‘adam’}
    alpha:L2惩罚(正则化项)参数

改良最优参数

  • for循环
  • 导入optuna函数

for循环

### from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_validate,KFold
from statistics import mean

results = []
# 最小叶子结点的参数取值
sample_leaf_options = list(range(2, 3))
# 决策树个数参数取值
n_estimators_options = list(range(165, 175))
criterion_options = ["gini","entropy"]
cv = KFold(n_splits=8, shuffle=True,random_state=0)

results = []
for leaf_size in sample_leaf_options:
    for n_estimators_size in n_estimators_options:
        for m in criterion_options:
            clf_pro = RandomForestClassifier(min_samples_leaf=leaf_size, n_estimators=n_estimators_size, criterion=m, random_state=50)
            clf_pro.fit(train_x, train_y)
            pred = clf_pro.predict(test_x)
            score = cross_validate(clf_pro,tatanic_x, tatanic_y,  cv=cv, return_train_score=True)
            results.append((leaf_size, n_estimators_size, m, mean(score['test_score'])))
            print(mean(score['test_score']))
print(max(results, key=lambda x: x[3]))

导入optuna函数

安装optuna

!pip install optuna

定义objective函数

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_validate, KFold
from statistics import mean

#  导入optuna
import optuna

#格式固定,不要乱改函数名
def objective(trial):
    min_samples_leaf = trial.suggest_int("min_samples_leaf", 1, 10)
    n_estimators = trial.suggest_int("n_estimators", 100, 200)
    criterion = trial.suggest_categorical("criterion", ["gini", "entropy"])
    
    RFC = RandomForestClassifier(min_samples_leaf = min_samples_leaf, n_estimators = n_estimators, criterion=criterion)
    RFC.fit(train_x, train_y)
    
    cv = KFold(n_splits=8, shuffle=True,random_state=0)
    score = cross_validate(clf,tatanic_x, tatanic_y, cv=cv, return_train_score=True)
    
    return  1 - mean(score['test_score'])

利用贝叶斯找到得分最高的参数组合

study = optuna.create_study()  # Create a new study.
study.optimize(objective, n_trials=10)  # Invoke optimization of the objective function.
print(study.best_params)
print(1 - study.best_value)
print(study.best_trial)

模型评估与选择篇

  • 交叉验证

交叉验证

# 选择随机森林作为模型
from sklearn.ensemble import RandomForestClassifier
# 导入交叉验证
from sklearn.model_selection import cross_validate, KFold
from statistics import mean

#定义模型,训练数据
clf = RandomForestClassifier(random_state=0)
clf = clf.fit(train_x, train_y)

#拆分训练与学习的数据并依次评价
cv = KFold(n_splits=10, shuffle=True,random_state=0)
score = cross_validate(clf,tatanic_x, tatanic_y,  cv=cv, return_train_score=True)
print(score)
print("score",mean(score['test_score']))
import matplotlib.pyplot as plt
#用循环找出最适合的分类个数
n_range = range(5,10)
n_scores = []
for n in n_range:
    cv = KFold(n_splits=n, shuffle=True,random_state=0)
    score = cross_validate(clf,tatanic_x, tatanic_y,  cv=cv, return_train_score=True)
    n_scores.append(mean(score['test_score']))

#打印出每个所对应的交叉验证的分数
plt.plot(n_range, n_scores)
plt.xlabel('Value of n for n_splits')
plt.ylabel('Cross-Validated MSE')
plt.show()

过拟合问题

from sklearn.model_selection import learning_curve
from sklearn.datasets import load_digits
from sklearn.svm import SVC
import matplotlib.pyplot as plt
import numpy as np

#引入数据
digits=load_digits()
X=digits.data
y=digits.target

#train_size表示记录学习过程中的某一步,比如在10%,25%...的过程中记录一下
train_size,train_loss,test_loss=learning_curve(SVC(gamma=0.1),X,y,cv=10,scoring='neg_mean_squared_error',train_sizes=[0.1,0.25,0.5,0.75,1])
train_loss_mean=-np.mean(train_loss,axis=1)
test_loss_mean=-np.mean(test_loss,axis=1)

plt.figure()
#将每一步进行打印出来
plt.plot(train_size,train_loss_mean,'o-',color='r',label='Training')
plt.plot(train_size,test_loss_mean,'o-',color='g',label='Cross-validation')
plt.legend('best')
plt.show()

在这里插入图片描述

#将learning_curve改为validation_curve
from sklearn.model_selection import  validation_curve
#改变param来观察Loss函数情况
param_range=np.logspace(-6,-2.3,5)
train_loss,test_loss=validation_curve(
    SVC(),X,y,param_name='gamma',param_range=param_range,cv=10,
    scoring='neg_mean_squared_error'
)
train_loss_mean=-np.mean(train_loss,axis=1)
test_loss_mean=-np.mean(test_loss,axis=1)

plt.figure()
plt.plot(param_range,train_loss_mean,'o-',color='r',label='Training')
plt.plot(param_range,test_loss_mean,'o-',color='g',label='Cross-validation')
plt.xlabel('gamma')
plt.ylabel('loss')
plt.legend(loc='best')
plt.show()

在这里插入图片描述

保存模型

保存为pickle文件

import pickle

# 保存模型
with open('model.pickle', 'wb') as f:
    pickle.dump(model, f)

# 读取模型
with open('model.pickle', 'rb') as f:
    model = pickle.load(f)
model.predict(X_test)

sklearn自带方法joblib

from sklearn.externals import joblib

# 保存模型
joblib.dump(model, 'model.pickle')

#载入模型
model = joblib.load('model.pickle')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值