python学习第四天
一、Pandas
①生成数组
import pandas as pd
data= pd. DataFrame( [ 1 , 2 , 3 , 4 ] , columns= [ "numbers" ] , index= [ "a" , "b" , "c" , "d" ] )
②数据的读取储存和索引
data= pd. read_csv( "data.csv" )
data. to_csv( "data1.csv" )
data. to_csv( "data1.csv" , encoding= 'utf-8-sig' )
data. index
data. columns
data. head( )
data[ "Job" ]
data. loc[ 3 , "Job" ]
x= data. loc[ : , "面积" ]
y= data. loc[ : , "房价" ]
data. iloc[ 6 , 0 ]
data. iloc[ 3 : 5 , 0 : ]
③Pandas的应用
pd. read_csv( "data.csv" )
pd. concat( [ data1, data2] )
data. append( [ data1, data2] )
data. isnull( )
data. dropna( )
data. fillna( 0 )
④Pandas的函数应用
data. drop( 2 )
data[ "Age" ] . sum ( )
data[ "Age" ] . mean( )
data[ "Age" ] . std( )
data[ "Age" ] . argmax( )
data[ "Age" ] . argmin( )
data. sort_values( by= "Age" )
data[ "Job" ] . unique( )
data{ "Age" } . values
data[ "Job" ] . describe( )
⑤Pandas文件储存
test_data_result= np. concatenate( ( x_test, y_test_proba, np. array( y_test_predict) . reshape( 5 , 1 ) ) , axis= 1 )
test_data_result= pd. DataFrame( test_data_result)
import matplotlib as mpl
mpl. rcParams[ 'font.family' ] = 'SimHei'
test_data_result. columns= [ '分数' , '学校' , '获奖' , '性别' , '英语' , 'p0' , 'p1' , 'p2' , '预测' ]
test_data_result. to_csv( 'test_data_result.csv' ,encoding= 'utf-8-sig' )
二、Matplotlib
①Matplotlib代码作图的实现
import matplotlib. pyplot as plt
plt. plot( x, y)
plt. legend( )
fig1= plt. figure( )
plt. scatter( x, y)
plt. hist( x, bins= 100 )
plt. plt. bar( [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ] , var_ratio)
plt. xlabel( "x" )
plt. ylabel( "y" )
plt. title( "asdf" )
plt. xlim( 0 , 5 )
plt. ylim( 0 , 2 )
plt. grid( "True" )
plt. value_cout( )
plt. show( )
plt. figure( )
plt. subplot( 1 , 2 , 1 )
plt. plot( x, y1, "r-" )
plt. subplot( 1 , 2 , 2 )
plt. plot( x, y2, "b--" )
fig= figure( )
fig1= plt. subplot( 121 )
fig2= plt. subplot( 122 )
②Matplotlib显示图片
m= np. zeros( [ 100 , 100 , 3 ] )
m[ 10 : 20 , : , : ] = 255
m[ : , 30 : 50 , 0 : 2 ] = 255
plt. imshow( m)
③Matplotlib显示汉字
import matplotlib as mpl
mpl. rcParams[ 'font.family' ] = 'SimHei'
import matplotlib as mplt
font2= { 'family' : 'SimHei' , 'weight' : 'normal' }
④Matplotlib保存图片到本地
from matplotlib import pyplot as plt
fig= figure( figsize= ( 200 , 200 ) )
fig. savefig( "test.png" )
⑤Matplotlib美化
plt. style. use( 'ggplot' )
三、Skimage
①基本操作
from skimage import io as io
from matplotlib import pyplot as plt
img= io. imread( '1.jpg' )
plt. imshow( img)
img_width= img. shape[ 1 ]
img_height= img. shape[ 0 ]
print ( img_width, img_height)
io. imsave( 'img1.png' , img)