基于Redis实现分布式锁之前,这些坑你一定得知道

本文探讨了基于Redis实现的分布式锁在实际应用中可能遇到的问题,包括单点故障、锁过期时间、高并发挑战、节点宕机、任务执行超时和系统时钟漂移等。通过分析这些问题,作者提出了Redlock算法和相应的解决方案,旨在帮助开发者更好地理解和应对分布式锁的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

开头

基于Redis的分布式锁对大家来说并不陌生,可是你的分布式锁有失败的时候吗?在失败的时候可曾怀疑过你在用的分布式锁真的靠谱吗?以下是结合自己的踩坑经验总结的一些经验之谈。

你真的需要分布式锁吗?

用到分布式锁说明遇到了多个进程共同访问同一个资源的问题, 一般是在两个场景下会防止对同一个资源的重复访问:

  1. 提高效率。比如多个节点计算同一批任务,如果某个任务已经有节点在计算了,那其他节点就不用重复计算了,以免浪费计算资源。不过重复计算也没事,不会造成其他更大的损失。也就是允许偶尔的失败。
  2. 保证正确性。这种情况对锁的要求就很高了,如果重复计算,会对正确性造成影响。这种不允许失败。

引入分布式锁势必要引入一个第三方的基础设施,比如MySQL,Redis,Zookeeper等,这些实现分布式锁的基础设施出问题了,也会影响业务,所以在使用分布式锁前可以考虑下是否可以不用加锁的方式实现?不过这个不在本文的讨论范围内,本文假设加锁的需求是合理的,并且偏向于上面的第二种情况,为什么是偏向?因为不存在100%靠谱的分布式锁,看完下面的内容就明白了。

从一个简单的分布式锁实现说起

分布式锁的Redis实现很常见,自己实现和使用第三方库都很简单,至少看上去是这样的,这里就介绍一个最简单靠谱的Redis实现。

最简单的实现

实现很经典了,这里只提两个要点?

  1. 加锁和解锁的锁必须是同一个,常见的解决方案是给每个锁一个钥匙(唯一ID),加锁时生成,解锁时判断。
  2. 不能让一个资源永久加锁。常见的解决方案是给一个锁的过期时间。当然了还有其他方案,后面再说。

一个可复制粘贴的实现方式如下:

加锁

public static boolean tryLock(String key, String uniqueId, int seconds) {
    return "OK".equals(jedis.set(key, uniqueId, "NX", "EX", seconds));
}

这里其实是调用了 SET key value PX milliseoncds NX,不明白这个命令的参考下SET key value [EX seconds|PX milliseconds] [NX|XX] [KEEPTTL]

解锁

public static boolean releaseLock(String key, String uniqueId) {
    String luaScript = "if redis.call('get', KEYS[1]) == ARGV[1] then " +
            "return redis.call('del', KEYS[1]) else return 0 end";
    return jedis.eval(
        luaScript, 
        Collections.singletonList(key), 
        Collections.singletonList(uniqueId)
    ).equals(1L);
}

这段实现的精髓在那个简单的lua脚本上,先判断唯一ID是否相等再操作。

靠谱吗?

这样的实现有什么问题呢?

  1. 单点问题。上面的实现只要一个master节点就能搞定,这里的单点指的是单master,就算是个集群,如果加锁成功后,锁从master复制到slave的时候挂了,也是会出现同一资源被多个client加锁的。
  2. 执行时间超过了锁的过期时间。上面写到为了不出现一直上锁的情况,加了一个兜底的过期时间,时间到了锁自动释放,但是,如果在这期间任务并没有做完怎么办?由于GC或者网络延迟导致的任务时间变长,很难保证任务一定能在锁的过期时间内完成。

如何解决这两个问题呢?试试看更复杂的实现吧。

Redlock算法

对于第一个单点问题,顺着redis的思路,接下来想到的肯定是Redlock了。Redlock为了解决单机的问题,需要多个(大于2)redis的master节点,多个master节点互相独立,没有数据同步。

Redlock的实现如下:

  1. 获取当前时间。
  2. 依次获取N个节点的锁。 每个节点加锁的实现方式同上。这里有个细节,就是每次获取锁的时候的过期时间都不同,需要减去之前获取锁的操作的耗时,
  • 比如传入的锁的过期时间为500ms,
  • 获取第一个节点的锁花了1ms,那么第一个节点的锁的过期时间就是499ms,
  • 获取第二个节点的锁花了2ms,那么第二个节点的锁的过期时间就是497ms
  • 如果锁的过期时间小于等于0了,说明整个获取锁的操作超时了,整个操作失败
  1. 判断是否获取锁成功。 如果client在上述步骤中获取到了(N/2 + 1)个节点锁,并且每个锁的过期时间都是大于0的,则获取锁成功,否则失败。失败时释放锁。
  2. 释放锁。 对所有节点发送释放锁的指令,每个节点的实现逻辑和上面的简单实现一样。为什么要对所有节点操作?因为分布式场景下从一个节点获取锁失败不代表在那个节点上加速失败,可能实际上加锁已经成功了,但是返回时因为网络抖动超时了。

以上就是大家常见的redlock实

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值