【新手适用】手把手教你从零开始实现一个基于Pytorch的卷积神经网络CNN一: 创建model模块和加载数据集

教程:j从零开始实现一个基于Pytorch的卷积神经网络 - 知乎

目录

 网络结构

 1 初始化

2 前向传播forward函数

2.1 forward函数定义

2.2 view函数和size函数

 如何获取channels? 

如何获取batchsize? 

2.3 forward实现

2.4 main方法调用


模型命名为LeNet,创建一个名为LeNet的类,该类继承了nn.Module类,写法如下:

class LeNet(nn.Module):

 网络结构

从图中可以看出,其输入32x32的灰度图像,由于MNIST数据集的图像为28x28,因此,我们将输入改为28x28,并依次计算每一层输出的特征图大小。其每一层参数大致如下:

输入层:输入大小28x28,通道数为1。注意:本层不算LeNet-5的网络结构,一般情况下不将输入层视为网络层次结构之一

C1-卷积层:输入大小28x28,通道数为1;输出大小28x28,通道数为6;卷积核大小为5x5;步长为1;边缘补零为2;激活函数为ReLU。注意:为了提升卷积神经网络的效果,在每个卷积层后添加激活函数,本教程使用的激活函数为ReLU。

S2-池化层:输入大小28x28,通道数为6;输出大小14x14,通道数为6;池化核大小为2x2;步长为2;池化方式为最大池化。

C3-卷积层:输入大小14x14,通道数为6;输出大小10x10,通道数为16;卷积核大小为5x5;步长为1;边缘补零为0;激活函数为ReLU。

S4-池化层:输入大小10x10,通道数为16;输出大小5x5,通道数为16;池化核大小为2x2;步长为2;池化方式为最大池化。

C5-卷积层:输入大小5x5,通道数为16;输出大小1x1,通道数为120;卷积核大小为5x5;步长为1;边缘补零为0;激活函数为ReLU。注意:这层也可以看作全连接层,可以通过全连接的方法实现。

F6-全连接层:输入为120维向量;输出为84维向量;激活函数为ReLU。

OUTPUT-输出层:输入为84维向量;输出为10维向量。注意:该层也是全连接层,且不带激活函数。

 1 初始化

 __init__函数即初始化,主要用于定义每一层的构成,如卷积、池化层等;根据网络结构对每一层的参数进行定义。

# 初始化模型
    def __init__(self):
        super(LeNet,self).__init__()

        # 定义每一层的操作和参数
        self.C1 = nn.Conv2d(in_channels=1,out_channels=6,kernel_size=5,stride=1,padding
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值