二叉搜索树的概念
二叉搜索树相关的操作
import java.util.LinkedList;
import java.util.Queue;
import java.util.Stack;
public class BST<E extends Comparable<E>> {
private class Node{
public E e;
public Node left,right;
public Node(E e){
this.e = e;
left = null;
right = null;
}
}
private Node root;
private int size;
public BST(){
root = null;
size = 0;
}
public int size(){
return size;
}
public boolean isEmpty(){
return size == 0;
}
public void add(E e ){
root = this.add(root,e);
}
private Node add(Node node,E e){
if(node == null){
node = new Node(e);
}
if(e.compareTo(node.e) < 0){
node.left = this.add(node.left,e);
}else if(e.compareTo(node.e) > 0){
node.right = this.add(node.right,e);
}
return node;
}
public boolean contains(E e){
return contains(root,e);
}
private boolean contains(Node node, E e){
if(node == null){
return false;
}
if(e.compareTo(node.e) == 0){
return true;
}
else if(e.compareTo(node.e) > 0){
return this.contains(node.right,e);
}
else{
return this.contains(node.left,e);
}
}
public void preOrder(){
preOrder(root);
}
private void preOrder(Node node){
if(node == null){
return;
}
System.out.println(node.e);
this.preOrder(node.left);
this.preOrder(node.right);
}
public void preOrderNR(){
Stack<Node> stack = new Stack<>();
stack.push(root);
while(!stack.isEmpty()){
Node cur = stack.pop();
if(cur.right != null){
stack.push(cur.right);
}
if(cur.left != null){
stack.push(cur.left);
}
}
}
public void inOrder(){
inOrder(root);
}
private void inOrder(Node node){
if(node == null){
return;
}
inOrder(node.left);
System.out.println(node.e);
inOrder(node.right);
}
public void postOrder(){
this.postOrder(root);
}
private void postOrder(Node node){
if(node == null){
return;
}
this.postOrder(node.left);
System.out.println(node.e);
this.postOrder(node.right);
}
public void levelOrder(){
Queue<Node> q = new LinkedList<>();
q.add(root);
while(!q.isEmpty()){
Node cur = q.remove();
System.out.println(cur.e);
if(cur.left != null){
q.add(cur.left);
}
if(cur.right != null){
q.add(cur.right);
}
}
}
public E minimum(){
if(size == 0){
throw new IllegalArgumentException("BST is empty");
}
return minimum(root).e;
}
private Node minimum(Node node){
if(node.left == null){
return node;
}
return minimum(node.left);
}
public E maximum(){
if(size == 0){
throw new IllegalArgumentException("BST is empty");
}
return maximum(root).e;
}
private Node maximum(Node node){
if(node.right == null){
return node;
}
return maximum(node.right);
}
public E removeMin(){
E ret = minimum();
root = removeMin(root);
return ret;
}
private Node removeMin(Node node){
if(node.left == null){
Node rightNode = node.right;
node.right = null;
size --;
return rightNode;
}
node.left = removeMin(node.left);
return node;
}
public E removeMax(){
E ret = maximum();
root = removeMax(root);
return ret;
}
private Node removeMax(Node node){
if(node.right == null){
Node leftNode = node.left;
node.left = null;
size--;
return leftNode;
}
node.right = removeMax(node.right);
return node;
}
public void remove(E e){
root = remove(root,e);
}
private Node remove(Node node, E e){
if(node == null){
return null;
}
if(e.compareTo(node.e) < 0){
node.left = remove(node.left,e);
return node;
}else if(e.compareTo(node.e) > 0){
node.right = remove(node.right,e);
return node;
}else{
if(node.left == null){
Node rightNode = node.right;
node.right = null;
size--;
return rightNode;
}
if(node.right == null){
Node leftNode = node.left;
node.left = null;
size--;
return leftNode;
}
Node successor = minimum(node.right);
successor.right = removeMin(node.right);
successor.left = node.left;
node.left = node.right = null;
return successor;
}
}
}