文章目录
Chapter 2 Multivariate Normal and Related Distributions
General Assumption
the underlying multivariate distribution is multivariate normal
2.1 Multivariate Normal Distribution
Definition
A random vector x x x is said to have a multivariate normal distribution if every linear combination of its components has an univariate normal distribution.
Suppose a = ( a 1 a 2 ) ′ a=(a_1 a_2)' a=(a1a2)′ and x = ( x 1 x 2 ) ′ x=(x_1 x_2)' x=(x1x2)′ . The multinormality of x x x requires that a ′ x = a 1 x 1 + a 2 x 2 a'x=a_1x_1+a_2x_2 a′x=a1x1+a2x2 is univariate normal for all a 1 a_1 a1 and a 2 a_2 a2.
- If a 1 = 0 a_1=0 a1=0, then a ′ x = x 2 a'x=x_2 a′x=x2
- If a 1 = a 2 = 0 a_1=a_2=0 a1=a2=0, then a ′ x = 0 a'x=0 a′x=0, we don’t want this.
Properties
These ten properties are absolutely fundamental, I proved them all.
Property 1
If x x x is multinormal, for any constant vector a a a, a ′ x ∼ N ( a ′ μ , a ′ Σ a ) a'x \sim N(a'\mu, a'\Sigma a) a′x∼N(a′μ,a′Σa)
Proof
∵ E ( a ′ x ) = a ′ μ a n d V a r ( a ′ x ) = a Σ a ′ ∵ a ′ x ∼ N , 根 据 m u l t i n o r m a l 的 定 义 ∴ a ′ x ∼ N ( a ′ μ , a ′ Σ a ) \begin{aligned} &\because E(a'x)=a'\mu \quad and \quad Var(a'x)=a\Sigma a' \\ &\because a'x\sim N,根据multinormal的定义 \\ &\therefore a'x \sim N(a'\mu, a'\Sigma a) \end{aligned} ∵E(a′x)=a′μandVar(a′x)=aΣa′∵a′x∼N,根据multinormal的定义∴a′x∼N(a′μ,a′Σa)
where a a a is of p × 1 p\times 1 p×1, μ \mu μ is of p × 1 p\times 1 p×1, and Σ \Sigma Σ is a square matrix of p dimensions.
Property 2
The moment generating function (m.g.f. 矩母函数 ) of a multinormal random vector x x x with mean vector μ \mu μ and covariance matrix Σ \Sigma Σ is given by
M x ( t ) = e x p ( t ′ μ + 1 2 t ′ Σ t ) M_x(t)=exp(t'\mu+\frac{1}{2}t'\Sigma t) Mx(t)=exp(t′μ+21t′Σt)
Thus, a multinormal distribution is **identified by its means μ \mu μ and covariances Σ \Sigma Σ **, We use the notation x ∼ N p ( μ , Σ ) x\sim N_p(\mu, \Sigma) x∼Np(μ,Σ)
Proof
Follow the Hint 对式子进行一些拆解就好了
∵ y = t ′ x ∼ N ( t ′ μ , t ′ Σ t ) ∴ M x ( t ) = E ( e t ′ x ) = E ( e y ) = ∫ − ∞ ∞ e y p ( y ) d y = ∫ − ∞ ∞ e y 1 2 π ∣ t ′ Σ t ∣ 1 2 e x p { − ( y − t ′ μ ) 2 2 t ′ Σ t } d y = ∫ − ∞ ∞ 1 2 π ∣ t ′ Σ t ∣ 1 2 e x p { − y 2 − 2 y t ′ μ + ( t ′ μ ) 2 − y 2 t ′ Σ t 2 t ′ Σ t } d y = ∫ − ∞ ∞ 1 2 π ∣ t ′ Σ t ∣ 1 2 e x p { − y 2 − 2 y ( t ′ μ + t ′ Σ t ) 2 t ′ Σ t } d y = ∫ − ∞ ∞ 1 2 π ∣ t ′ Σ t ∣ 1 2 e x p { − ( y − ( t ′ μ + t ′ Σ t ) ) 2 − ( t ′ Σ t ) 2 − 2 t ′ μ t ′ Σ t 2 t ′ Σ t } d y = e x p { t ′ μ + 1 2 t ′ Σ t } ∫ − ∞ ∞ 1 2 π ∣ t ′ Σ t ∣ 1 2 e x p { − ( y − ( t ′ μ + t ′ Σ t ) ) 2 2 t ′ Σ t } d y = e x p ( t ′ μ + 1 2 t ′ Σ t ) \begin{aligned} \because y &= t'x\sim N(t'\mu, t'\Sigma t) \\ \therefore M_x(t) &= E(e^{t'x})=E(e^y) \\ &=\int_{-\infty}^{\infty}e^yp(y)dy \\ &=\int_{-\infty}^{\infty}e^y\frac{1}{\sqrt{2\pi}|t'\Sigma t|^{\frac{1}{2}}}exp\{-\frac{(y-t'\mu)^2}{2t'\Sigma t}\}dy \\ &=\int_{-\infty}^{\infty}\frac{1}{\sqrt{2\pi}|t'\Sigma t|^{\frac{1}{2}}}exp\{-\frac{y^2-2yt'\mu+(t'\mu)^2-y2t'\Sigma t}{2t'\Sigma t}\}dy \\ &=\int_{-\infty}^{\infty}\frac{1}{\sqrt{2\pi}|t'\Sigma t|^{\frac{1}{2}}}exp\{-\frac{y^2-2y(t'\mu+t'\Sigma t)}{2t'\Sigma t}\}dy \\ &=\int_{-\infty}^{\infty}\frac{1}{\sqrt{2\pi}|t'\Sigma t|^{\frac{1}{2}}}exp\{-\frac{(y-(t'\mu+t'\Sigma t))^2-(t'\Sigma t)^2-2t'\mu t'\Sigma t}{2t'\Sigma t}\}dy \\ &=exp\{t'\mu+\frac{1}{2}t'\Sigma t\}\int_{-\infty}^{\infty}\frac{1}{\sqrt{2\pi}|t'\Sigma t|^{\frac{1}{2}}}exp\{-\frac{(y-(t'\mu+t'\Sigma t))^2}{2t'\Sigma t}\}dy \\ &= exp(t'\mu+\frac{1}{2}t'\Sigma t) \\\\ \end{aligned} ∵y∴Mx(t)=t′x∼N(t′μ,t′Σt)=E(et′x)=E(ey)=∫−∞∞eyp(y)dy=∫−∞∞ey2π∣t′Σt∣211exp{
−2t′Σt(y−t′μ)2}dy=∫−∞∞2π∣t′Σt∣211exp{
−2t′Σty2−2yt′μ+(t′μ)2−y2t′Σt}dy=∫−∞∞2π∣t′Σt∣211exp{
−2t′Σty2−2y(t′μ+t′Σt)}dy=∫−∞∞2π∣t′Σt∣211exp{
−2t′Σt(y−(t′μ<