【Multivariate Data Analysis 02】Multivariate Normal and Related Distributions 多元正态及其相关分布

本文深入探讨了多元正态分布,包括其定义、性质以及与统计模型的关系。核心内容涉及随机向量的线性组合具有单变量正态分布的特性,以及多元正态分布的矩母函数、特征函数和概率密度函数。此外,还讨论了独立随机变量和的性质以及矩阵变换对分布的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Chapter 2 Multivariate Normal and Related Distributions

General Assumption

the underlying multivariate distribution is multivariate normal

2.1 Multivariate Normal Distribution

Definition

A random vector x x x is said to have a multivariate normal distribution if every linear combination of its components has an univariate normal distribution.

Suppose a = ( a 1 a 2 ) ′ a=(a_1 a_2)' a=(a1a2) and x = ( x 1 x 2 ) ′ x=(x_1 x_2)' x=(x1x2) . The multinormality of x x x requires that a ′ x = a 1 x 1 + a 2 x 2 a'x=a_1x_1+a_2x_2 ax=a1x1+a2x2 is univariate normal for all a 1 a_1 a1 and a 2 a_2 a2.

  • If a 1 = 0 a_1=0 a1=0, then a ′ x = x 2 a'x=x_2 ax=x2
  • If a 1 = a 2 = 0 a_1=a_2=0 a1=a2=0, then a ′ x = 0 a'x=0 ax=0, we don’t want this.

Properties

These ten properties are absolutely fundamental, I proved them all.

Property 1

If x x x is multinormal, for any constant vector a a a, a ′ x ∼ N ( a ′ μ , a ′ Σ a ) a'x \sim N(a'\mu, a'\Sigma a) axN(aμ,aΣa)


Proof
∵ E ( a ′ x ) = a ′ μ a n d V a r ( a ′ x ) = a Σ a ′ ∵ a ′ x ∼ N , 根 据 m u l t i n o r m a l 的 定 义 ∴ a ′ x ∼ N ( a ′ μ , a ′ Σ a ) \begin{aligned} &\because E(a'x)=a'\mu \quad and \quad Var(a'x)=a\Sigma a' \\ &\because a'x\sim N,根据multinormal的定义 \\ &\therefore a'x \sim N(a'\mu, a'\Sigma a) \end{aligned} E(ax)=aμandVar(ax)=aΣaaxN,multinormalaxN(aμ,aΣa)

where a a a is of p × 1 p\times 1 p×1, μ \mu μ is of p × 1 p\times 1 p×1, and Σ \Sigma Σ is a square matrix of p dimensions.


Property 2

The moment generating function (m.g.f. 矩母函数 ) of a multinormal random vector x x x with mean vector μ \mu μ and covariance matrix Σ \Sigma Σ is given by
M x ( t ) = e x p ( t ′ μ + 1 2 t ′ Σ t ) M_x(t)=exp(t'\mu+\frac{1}{2}t'\Sigma t) Mx(t)=exp(tμ+21tΣt)
Thus, a multinormal distribution is **identified by its means μ \mu μ and covariances Σ \Sigma Σ **, We use the notation x ∼ N p ( μ , Σ ) x\sim N_p(\mu, \Sigma) xNp(μ,Σ)


Proof

Follow the Hint 对式子进行一些拆解就好了
∵ y = t ′ x ∼ N ( t ′ μ , t ′ Σ t ) ∴ M x ( t ) = E ( e t ′ x ) = E ( e y ) = ∫ − ∞ ∞ e y p ( y ) d y = ∫ − ∞ ∞ e y 1 2 π ∣ t ′ Σ t ∣ 1 2 e x p { − ( y − t ′ μ ) 2 2 t ′ Σ t } d y = ∫ − ∞ ∞ 1 2 π ∣ t ′ Σ t ∣ 1 2 e x p { − y 2 − 2 y t ′ μ + ( t ′ μ ) 2 − y 2 t ′ Σ t 2 t ′ Σ t } d y = ∫ − ∞ ∞ 1 2 π ∣ t ′ Σ t ∣ 1 2 e x p { − y 2 − 2 y ( t ′ μ + t ′ Σ t ) 2 t ′ Σ t } d y = ∫ − ∞ ∞ 1 2 π ∣ t ′ Σ t ∣ 1 2 e x p { − ( y − ( t ′ μ + t ′ Σ t ) ) 2 − ( t ′ Σ t ) 2 − 2 t ′ μ t ′ Σ t 2 t ′ Σ t } d y = e x p { t ′ μ + 1 2 t ′ Σ t } ∫ − ∞ ∞ 1 2 π ∣ t ′ Σ t ∣ 1 2 e x p { − ( y − ( t ′ μ + t ′ Σ t ) ) 2 2 t ′ Σ t } d y = e x p ( t ′ μ + 1 2 t ′ Σ t ) \begin{aligned} \because y &= t'x\sim N(t'\mu, t'\Sigma t) \\ \therefore M_x(t) &= E(e^{t'x})=E(e^y) \\ &=\int_{-\infty}^{\infty}e^yp(y)dy \\ &=\int_{-\infty}^{\infty}e^y\frac{1}{\sqrt{2\pi}|t'\Sigma t|^{\frac{1}{2}}}exp\{-\frac{(y-t'\mu)^2}{2t'\Sigma t}\}dy \\ &=\int_{-\infty}^{\infty}\frac{1}{\sqrt{2\pi}|t'\Sigma t|^{\frac{1}{2}}}exp\{-\frac{y^2-2yt'\mu+(t'\mu)^2-y2t'\Sigma t}{2t'\Sigma t}\}dy \\ &=\int_{-\infty}^{\infty}\frac{1}{\sqrt{2\pi}|t'\Sigma t|^{\frac{1}{2}}}exp\{-\frac{y^2-2y(t'\mu+t'\Sigma t)}{2t'\Sigma t}\}dy \\ &=\int_{-\infty}^{\infty}\frac{1}{\sqrt{2\pi}|t'\Sigma t|^{\frac{1}{2}}}exp\{-\frac{(y-(t'\mu+t'\Sigma t))^2-(t'\Sigma t)^2-2t'\mu t'\Sigma t}{2t'\Sigma t}\}dy \\ &=exp\{t'\mu+\frac{1}{2}t'\Sigma t\}\int_{-\infty}^{\infty}\frac{1}{\sqrt{2\pi}|t'\Sigma t|^{\frac{1}{2}}}exp\{-\frac{(y-(t'\mu+t'\Sigma t))^2}{2t'\Sigma t}\}dy \\ &= exp(t'\mu+\frac{1}{2}t'\Sigma t) \\\\ \end{aligned} yMx(t)=txN(tμ,tΣt)=E(etx)=E(ey)=eyp(y)dy=ey2π tΣt211exp{ 2tΣt(ytμ)2}dy=2π tΣt211exp{ 2tΣty22ytμ+(tμ)2y2tΣt}dy=2π tΣt211exp{ 2tΣty22y(tμ+tΣt)}dy=2π tΣt211exp{ 2tΣt(y(tμ<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值