计算机网络学习笔记第二章(物理层)超详细整理

本文介绍了计算机网络物理层的基础概念,包括传输媒体、传输方式、编码与调制等内容。重点讲解了导引型与非导引型传输媒体的区别,以及同步传输、异步传输等通信方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2.1、物理层的基本概念

image-20201008130211749


2.2、物理层下面的传输媒体

传输媒体不属于计算机网络体系结构的任何一层。如果非要将它添加到体系结构中,那只能将其放置到物理层之下。

传输媒体也称为传输介质或传输媒介,他就是数据传输系统中在发送器和接收器之间的物理通路。传输媒体分为两大类,即导引型传输媒体非导引型传输媒体

image-20210410080320055

1、导引型传输媒体

在导引型传输媒体中,电磁波被导引沿着固体媒体传播。

同轴电缆

image-20201008132050917

双绞线

image-20201008132225715

光纤

image-20210410082815382

光纤的工作原理

image-20201011001240573

image-20210410083150037

多模光纤和单模光纤

多模光纤

  • 可以存在多条不同角度入射的光线在一条光纤中传输。这种光纤就称为多模光纤

单模光纤

  • 若光纤的直径减小到只有一个光的波长,则光纤就像一根波导那样,它可使光线一直向前传播,而不会产生多次反射。这样的光纤称为单模光纤

image-20210410083419663

电力线

image-20201008132709015

2、非导引型传输媒体

非导引型传输媒体是指自由空间。

无线电波

image-20201008132857833

image-20201008132943176

无线电波中的低频和中频主要通过地面波来进行传输,而高频和甚高频主要是靠电离层的反射。

image-20201008133135659

微波

由于微波在空间是直线传播的,而地球是个曲面,因此其传播距离受到限制,一般只有50公里左右。若使用100米高的电信塔,则传播距离可增大到100公里。常用位于地球3578公里的卫星作为中继器的一种微波通信接力通信。

image-20201008133317293

红外线

image-20201008133421986

可见光

LIFI

image-20201008133718810


2.3、传输方式

分类

image-20210410090230936

1、串行传输和并行传输

image-20201008135603009

串行传输

  • 数据是一个比特一个比特依次发送的,因此在发送端与接收端之间,只需要一条数据传输线路即可

并行传输

  • 一次发送n个比特,因此,在发送端和接收端之间需要有n条传输线路

  • 并行传输的优点是比串行传输的速度n倍,但成本高

数据在传输线路上的传输采用是串行传输,计算机内部的数据传输常用并行传输

2、同步传输和异步传输

image-20201008140209430

同步传输

  • 数据块以稳定的比特流的形式传输。字节之间没有间隔
  • 接收端在每个比特信号的中间时刻进行检测,以判别接收到的是比特0还是比特1
  • 由于不同设备的时钟频率存在一定差异,不可能做到完全相同,在传输大量数据的过程中,所产生的判别时刻的累计误差,会导致接收端对比特信号的判别错位

所以要使收发双发时钟保持同步

image-20201008140850958
异步传输

  • 以字节为独立的传输单位,字节之间的时间间隔不是固定
  • 接收端仅在每个字节的起始处对字节内的比特实现同步
  • 通常在每个字节前后分别加上起始位和结束位
  • 这里的异步指的是字节之间的异步,但字节中的每个比特仍然要同步

3、单向通信(单工)、双向交替通信(半双工)和双向同时通信(全双工)

在许多情况下,我们要使用“信道(channel”这一名词。信道和电路并不等同。信道一般都是用来表示向 某一个方向传送信息的媒体因此,一条通信电路往往包含一条发送信道和一条接收信道。

从通信的双方信息交互的方式来看,可以有以下三种基本方式:

单向通信

又称为单工通信,通信双方只有一个数据传输方向,即只能有一个方向的通信而没有反方向的交互。例如无线电广播或有线电以及电视广播就属于这种类型

image-20201008141345239

双向交替通信

又称为半双工通信,通信的双方可以相互传输数据,但不能同时进行。这种通信方式使一方发送另一方接收,过一段时间后可以再反过来。例如,对讲机采用的就是这种通信方式。

image-20201008141921924

双向同时通信

又称为全双工通信,通信的双方可以同时发送和接收信息。例如,电话采用的就是这种通信方式。

image-20201008142037846

单向通信只需要一条信道,而双向交替通信双向同时通信则需要两条信道(每个方向各一条)

双向同时通信的传输效率最高

4、总结

image-20210410091715461

2.4、编码与调制

1、信道

信道一般是用来表示向某一个方向传送信息的媒体。

信道可分为数字信道和模拟信道两种,再不改变信号性质的前提下,仅对数字基带信号的波形进行变换,称为为编码。可以在数字信道中传输。例如,以太网使用曼彻斯特,4B/5B,8B/10B等编码。把数字基带的频率范围搬移到较高的频段,并转换为模拟信号,称为调制。调制后产生的信号是模拟信号,可在模拟信道中传输。

常用术语

  • 数据 (data) —— 运送消息的实体。

  • 信号 (signal) —— 数据的电气的或电磁的表现。

  • 模拟信号 (analogous signal) —— 代表消息的参数的取值是连续的。

  • 数字信号 (digital signal) —— 代表消息的参数的取值是离散的。

  • 码元 (code) —— 在使用时间域(或简称为时域)的波形表示数字信号时,代表不同离散数值的基本波形。

  • 基带信号(即基本频带信号)—— 来自信源的信号。像计算机输出的代表各种文字或图像文件的数据信号都属于基带信号。

  • 基带信号往往包含有较多的低频成分,甚至有直流成分,而许多信道并不能传输这种低频分量或直流分量。因此必须对基带信号进行调制 (modulation)。

在计算机网络中,常见的是将数字基带信号通过编码或调制的方法在相应信道进行传输

image-20201008145747263

2、码元

在使用时间域的波形表示数字信号时,代表不同离散数值的基本波形称为码元。简单来说,码元就是构成信号的一段波形。

image-20210410100630651

3、传输媒体与信道的关系

信道的几个基本概念

  • 信道 —— 一般用来表示向某一个方向传送信息的媒体。
  • 单向通信(单工通信)——只能有一个方向的通信而没有反方向的交互。
  • 双向交替通信(半双工通信)——通信的双方都可以发送信息,但不能双方同时发送(当然也就不能同时接收)。
  • 双向同时通信(全双工通信)——通信的双方可以同时发送和接收信息。

严格来说,传输媒体不能和信道划等号

对于单工传输,传输媒体只包含一个信道,要么是发送信道,要么是接收信道

image-20201008145304974

对于半双工和全双工,传输媒体中要包含两个信道,一个发送信道,另一个是接收信道

image-20201008145329540

如果使用信道复用技术,一条传输媒体还可以包含多个信道

4、常用编码

不归零编码

image-20201008150058039

  • 正电平表示比特1

  • 负电平表示比特0

中间的虚线是零电平,所谓不归零编码,就是指在整个码元时间内,电平不会出现零电平

实际比特1和比特0的表示要看现实怎么规定

image-20201008150528228
这需要发送方的发送与接收方的接收做到严格的同步

  • 需要额外一根传输线来传输时钟信号,使发送方和接收方同步,接收方按时钟信号的节拍来逐个接收码元
  • 但是对于计算机网络,宁愿利用这根传输线传输数据信号,而不是传输时钟信号

由于不归零编码存在同步问题,因此计算机网络中的数据传输不采用这类编码!

同步是指:发送方发出数据后,等接收方发回响应以后才发下一个数据包的通讯方式。 异步是指:发送方发出数据后,不等接收方发回响应,接着发送下个数据包的通讯方式。

归零编码

image-20201008195033189
image-20201008151347028

归零编码虽然自同步,但编码效率低

曼彻斯特编码

image-20201008195148727
在每个码元时间的中间时刻,信号都会发生跳变,如图

  • 负跳变表示比特1
  • 正跳变表示比特0
  • 码元中间时刻的跳变即表示时钟,又表示数据

传统以太网使用的就是曼切斯特编码

差分曼彻斯特编码

image-20201008195235561

在每个码元时间的中间时刻,信号都会发送跳变,但与曼彻斯特不同

  • 跳变仅表示时钟
  • 码元开始处电平是否变换表示数据
    • 变化表示比特1/0
    • 不变化表示比特0/1

比曼彻斯特编码变化少,更适合较高的传输速率

习题

image-20210410102652574

我们假设正跳变表示1,负跳变表示0。

image-20210410102830982

发现没有一个答案时符合的,因此我们的假设是错误的,那么应该是正跳变表示0,负跳变表示1。

image-20210410102949501

正确答案:A

总结

image-20201008153522501

5、调制

数字信号转换为模拟信号,在模拟信道中传输,例如WiFi,采用补码键控CCK/直接序列扩频DSSS/正交频分复用OFDM等调制方式。

模拟信号转换为另一种模拟信号,在模拟信道中传输,例如,语音数据加载到模拟的载波信号中传输。频分复用FDM技术,充分利用带宽资源。

基本调制方法

image-20201008155429044

  • 调幅AM:所调制的信号由两种不同振幅的基本波形构成。每个基本波形只能表示1比特信息量。
  • 调频FM:所调制的信号由两种不同频率的基本波形构成。每个基本波形只能表示1比特信息量。
  • 调相PM:所调制的信号由两种不同初相位的基本波形构成。每个基本波形只能表示1比特信息量。

但是使用基本调制方法,1个码元只能包含1个比特信息

混合调制

image-20201008155804617 image-20201008155835940

image-20210410103623451

image-20201008160133748

上图码元所对应的4个比特是错误的,码元不能随便对应4个比特

image-20201008160208060

2.5、信道的极限容量

  • 任何实际的信道都不是理想的,在传输信号时会产生各种失真以及带来多种干扰。
  • 码元传输的速率越高,或信号传输的距离越远,或传输媒体质量越差,在信道的输出端的波形的失真就越严重。

image-20201010204336400

失真的原因:

  • 码元传输的速率越高
  • 信号传输的距离越远
  • 噪声干扰越大
  • 传输媒体质量越差

image-20201010204818976

image-20201010204928756

奈氏准则和香农公式对比:

image-20201010205029346

习题练习

不管题目给出的调制技术多么“牛”或对于我们而言有多陌生,这都不会影响我们解题。我们只需关心这种调制技术可以调制出多少个不同的基本波形(码元)即可。

第一题

image-20210410183259629

第二题

image-20210410183607656

第三题

image-20210410184439842

第四题

image-20210412081031953

第五题

image-20210412081249552

2.6、补充:信道复用技术

本节内容视频未讲到,是《计算机网络(第7版)谢希仁》物理层的内容

1、频分复用、时分复用和统计时分复用

复用 (multiplexing) 是通信技术中的基本概念。

它允许用户使用一个共享信道进行通信,降低成本,提高利用率。

image-20201011001949479

频分复用 FDM (Frequency Division Multiplexing)

  • 将整个带宽分为多份,用户在分配到一定的频带后,在通信过程中自始至终都占用这个频带。
  • 频分复用的所有用户在同样的时间占用不同的带宽资源(请注意,这里的“带宽”是频率带宽而不是数据的发送速率)。

image-20201011002236208

时分复用TDM (Time Division Multiplexing)

  • 时分复用则是将时间划分为一段段等长的时分复用帧(TDM帧)。每一个时分复用的用户在每一个 TDM 帧中占用固定序号的时隙。
  • 每一个用户所占用的时隙是周期性地出现(其周期就是TDM帧的长度)的。
  • TDM 信号也称为等时 (isochronous) 信号。
  • 时分复用的所有用户在不同的时间占用同样的频带宽度。

image-20201011002540041

  • 时分复用可能会造成线路资源的浪费
    • 使用时分复用系统传送计算机数据时,由于计算机数据的突发性质,用户对分配到的子信道的利用率一般是不高的。

image-20201011002842704

统计时分复用 STDM (Statistic TDM)

image-20201011002953703

2、波分复用

波分复用 WDM(Wavelength Division Multiplexing)

image-20201011003214653

3、码分复用

码分复用 CDM (Code Division Multiplexing)

  • 常用的名词是码分多址 CDMA (Code Division Multiple Access)。
  • 各用户使用经过特殊挑选的不同码型,因此彼此不会造成干扰。
  • 这种系统发送的信号有很强的抗干扰能力,其频谱类似于白噪声,不易被敌人发现。

2.7、章节总结

image-20210412094436049

<think>好的,用户让我介绍计算机网络第二章物理层的思维导图。我需要先回忆一下物理层的主要内容,然后组织成一个结构清晰的思维导图。首先,物理层是OSI模型中的最底层,负责传输原始比特流。核心功能包括定义物理接口特性、传输介质、数据传输方式、信号编码、信道复用技术以及物理层设备等。 用户之前已经问过计算机网络的概述,现在具体到第二章,可能是在学习课程或者备考,需要系统化的总结。我应该分个大块来介绍,比如基本概念、传输介质、数据通信基础理论、信道复用技术、宽带接入技术等。每个部分下面再细分关键点,比如传输介质分为有线(双绞线、同轴电缆、光纤)和无线(无线电波、微波、红外线),这样结构更清晰。 还要注意用户可能需要的重点,比如奈奎斯特定理和香农定理的区别,以及常见的复用技术如频分、时分、波分和码分。物理层设备如中继器和集线器的作用也需要提到。此外,宽带接入技术如ADSL、HFC、FTTH这些可能也是用户关心的内容。 需要确保思维导图逻辑清晰,层次分明,方便用户记忆和复习。可能用户需要应付考试或者做笔记,所以每个知识点要简明扼要,但覆盖全面。同时,避免使用复杂术语,用简单的中文解释,符合之前用户要求的系统级指令中的中文回答和LaTeX格式的数学表达式。 最后,检查是否有遗漏的重要知识点,比如传输方式(串行/并行,同步/异步)、信号调制方法等。确保每个部分都涵盖关键内容,帮助用户构建完整的知识框架。</think>以下是计算机网络第二章**物理层**的思维导图框架,整理成结构化描述供参考: --- ### **物理层核心内容** **1. 基本概念** - **核心任务**:在传输介质上透明传输原始比特流。 - **四大特性**: - 机械特性(接口形状、引脚数量) - 电气特性(电压范围、信号电平) - 功能特性(引脚功能定义) - 规程特性(时序关系与交互流程) **2. 传输介质** - **有线介质**: - 双绞线(UTP/STP,常用Cat5/6) - 同轴电缆(基带/宽带,如电视信号传输) - 光纤(单模/多模,高速长距离传输) - **无线介质**: - 无线电波(Wi-Fi、蜂窝网络) - 微波(地面微波接力、卫星通信) - 红外线(短距离点对点) **3. 数据通信基础理论** - **信号类型**: - 模拟信号(连续变化,如传统电话) - 数字信号(离散值,如计算机二进制) - **调制与编码**: - 数字信号→模拟信号:ASK、FSK、PSK - 模拟信号→数字信号:PCM(采样、量化、编码) - **传输性能指标**: - 码元传输速率(波特率) - 比特率($R_b = R_B \log_2 V$,$V$为码元离散值数) - **两大定理**: - **奈奎斯特定理**:无噪声信道极限速率 $C = 2W \log_2 V$ - **香农定理**:有噪声信道极限速率 $C = W \log_2(1 + S/N)$ **4. 信道复用技术** - **频分复用(FDM)**:按频率划分信道(如广播电台) - **时分复用(TDM)**:按时间片轮转(如传统电话网络) - **波分复用(WDM)**:光信号不同波长复用(光纤通信) - **码分复用(CDM)**:通过编码区分信号(如CDMA技术) **5. 物理层设备** - **中继器(Repeater)**:放大信号,延长传输距离(仅处理物理信号) - **集线器(Hub)**:多端口中继器,广播转发数据(冲突域扩大) **6. 宽带接入技术** - **ADSL**(非对称数字用户线,利用电话线高频段) - **HFC**(混合光纤同轴,结合光纤与有线电视网) - **FTTH**(光纤到户,直接光纤连接用户) --- ### **思维导图图示** ``` 物理层 ├─ 基本概念(任务、四特性) ├─ 传输介质(有线/无线) ├─ 数据通信基础(信号、编码、定理) ├─ 信道复用(FDM/TDM/WDM/CDM) ├─ 物理层设备(中继器、集线器) └─ 宽带接入技术(ADSL/HFC/FTTH) ``` --- ### **学习重点** 1. **奈奎斯特与香农公式**:理解应用场景与计算差异。 2. **复用技术对比**:掌握各类复用技术的原理与典型应用。 3. **物理层设备局限性**:中继器和集线器不隔离冲突域/广播域。 需要进一步展开某部分内容可随时告知! 📡
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林小鹿@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值