李宏毅老师机器学习选择题解析

本文整理了李宏毅老师机器学习课程中的选择题解析,涵盖Mini-Batch选择、梯度下降、正则化、模型优化等多个主题。内容包括单选题和多选题,旨在帮助学习者巩固机器学习理论知识,并提供实践指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习选择题解析加整理

项目说明,本项目是李宏毅老师在飞桨授权课程的配套问题
课程 传送门
该项目AiStudio项目 传送门

仅供学习参考!

三岁出品必是精品!
整理内容源于李宏毅老师机器学习课程群提问答疑解析内容!

单选题(一)


机器学习训练时,Mini-Batch 的大小优选为2个的幂,如 256 或 512。它背后的原因是什么?
A. Mini-Batch 为偶数的时候,梯度下降算法训练的更快
B. Mini-Batch 设为2的幂,是为了符合CPU、GPU的内存要求,利于并行化处理
C. 不使用偶数时,损失函数是不稳定的
D. 以上说法都不对

答案:B
解析:略


下列说法错误的是?
A. 当目标函数是凸函数时,梯度下降算法的解一般就是全局最优解
B. 进行 PCA 降维时,需要计算协方差矩阵
C. 沿负梯度的方向一定是最优的方向
D. 利用拉格朗日函数能解带约束的优化问题

答案:C
解析:沿负梯度的方向是函数值减少最快的方向但不一定就是最优方向。


关于 L1、L2 正则化下列说法正确的是?
A. L2 正则化能防止过拟合,提升模型的泛化能力,但 L1 做不到这点
B. L2 正则化技术又称为 Lasso Regularization
C. L1 正则化得到的解更加稀疏
D. L2 正则化得到的解更加稀疏

答案:C
解析:L1、L2 正则化都能防止过拟合,提升模型的泛化能力。L1 正则化技术又称为 Lasso Regularization。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三岁学编程

感谢支持,更好的作品会继续努力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值