优化之EXPAIN执行计划

SQL查询优化与EXPLAIN详解
本文深入解析SQL查询优化技巧,重点介绍EXPLAIN语句的详细解读,包括id、selecttype、table、partitions、type、possible_keys、key、key_len、ref、rows、filtered和extra等字段的意义及应用,帮助读者理解并优化数据库查询性能。

准备测试数据
CREATE TABLE actor (
id int(22) NOT NULL AUTO_INCREMENT,
name varchar(255) DEFAULT NULL,
update_time datetime DEFAULT NULL,
PRIMARY KEY (id)
) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8;

insert into actor(id,name,update_time) values (1,‘a’,‘2019-10-21 14:03:45’),(2,‘b’,‘2019-10-22 14:03:49’),(3,‘c’,‘2019-10-23 14:03:52’);

CREATE TABLE film (
id int(22) NOT NULL AUTO_INCREMENT,
name varchar(255) DEFAULT NULL,
PRIMARY KEY (id)
) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8;

insert into film(id,name) values (1,‘film1’),(2,‘film2’),(3,‘film0’);

CREATE TABLE film_actor (
id int(22) NOT NULL AUTO_INCREMENT,
film_id int(22) DEFAULT NULL,
actor_id int(22) DEFAULT NULL,
PRIMARY KEY (id)
) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8;

insert into film_actor(id,film_id,actor_id) values (1,1,1),(2,1,2),(3,2,1);

一. explain 之 id
EXPLAIN SELECT (SELECT 1 FROM actor WHERE id = 1)
FROM (SELECT * FROM film WHERE id = 1) der;

三种情况
1.id相同,表示加载表的顺序是从上到下
2.id不同,值越大优先级越高,越先执行
3.id有相同也有不同,id相同的可以认为是一组,从上往下执行,在所有组中,id值越大,优先级越高,越先执行。

二. explain 之 select type

EXPLAIN SELECT * FROM film;

EXPLAIN
SELECT (SELECT 1 FROM actor WHERE id = 1)
FROM (SELECT * FROM film WHERE id = 1 UNION SELECT * FROM film WHERE id = 1) der;

simple :简单select查询,查询中不包含子查询或union
primary :复杂查询中最外层的select
derived : 包含在from子句中的子查询。派生出一张表临时存放子查询的结果集
union : 在union中的第二个随后的select并集去重查询
union result :从union临时表检索结果的select,并集去重查询后派生出一张临时表所存放的结果
subquery: :包含在select中的查询,子查询

三. explain 之 table
从哪个表中读取数据

四. explain 之 partitions
分区表
如果没有设置分区的话,则为null

五. explain 之 type

EXPLAIN SELECT * FROM (SELECT * FROM film WHERE id = 1) tmp;

EXPLAIN SELECT * FROM film_actor LEFT JOIN film ON film_actor.film_id = film.id;

EXPLAIN SELECT * FROM actor WHERE id > 1;

EXPLAIN SELECT COUNT(0) FROM film;

EXPLAIN SELECT * FROM actor;

type 含义:关联类型或访问类型,MYSQL决定如何查找表中的行
NULL MySQL不访问任何表,索引,直接返回结果

system 表只有一行记录(等于系统表),这是const类型的特例,一般不会出现

const 表示通过索引一次就找到了,const 用于比较primary key 或者 unique 索引。因为只匹配一行数据,所以很快。
如将主键置于where列表中,MySQL 就能将该查询转换为一个常量。const于将"主键" 或 “唯一” 索引的所有部分与常量值进行比较

eq_ref 类似ref,区别在于使用的是唯一索引,使用主键的关联查询,关联查询出的记录只有一条。常见于主键或唯一索引扫描

ref 非唯一性索引扫描,返回匹配某个单独值的所有行。本质上也是一种索引访问,返回所有匹配某个单独值的所有行(多个)

range 只检索给定返回的行,使用一个索引来选择行。 where 之后出现 between , < , > , in 等操作。

index index 与 ALL的区别为 index 类型只是遍历了索引树, 通常比ALL 快, ALL 是遍历数据文件。

all 将遍历全表以找到匹配的行

结果值从最好到最坏依次是:

最好 system > const > eq_ref > ref > range > index > ALL 最坏

六. explain 之 possible_keys(可能)
显示查询可能使用哪些索引来查找

七. explain 之 key(实际)
显示mysql实际采用哪个索引来优化对该表的访问

八. explain 之 key_len
显示mysql在索引李使用的字节数,通过这个值可以算出具体使用了索引中的那个列

九. explain 之 ref
这一列显示了在key列记录的索引中,表查找值所用到的列或常量

十. explain 之 rows
mysql估计要读取并检测的行数,这个不是结果集的行数

十一. explain 之 filtered
是一个百分比的值, rows * filtered / 100 这个结果将与前表产生交互

十二. explain 之 extra

EXPLAIN SELECT DISTINCT NAME FROM film LEFT JOIN film_actor ON film.id = film_actor.film_id;

EXPLAIN SELECT id FROM film ORDER BY id;

EXPLAIN SELECT * FROM film WHERE id > 1;

EXPLAIN SELECT * FROM actor ORDER BY NAME;

展示的额外信息
distinct 一旦mysql找到了与行相关联匹配的行,就不再搜索了
using index 发生在对表的请求列都是同一索引的部分的时候,返回的列数据只使用了索引中的信息,而没有再去访问表中的杭机路, 是性能高的表现。
using where mysql服务器将在存储引擎检索行后再进行过滤,就是先读取整行数据,再按照where条件进行检查,符合就留下,不符合就丢弃。
using temporary 使用临时表来中间操作。效率低下,解决: 为查询的列创建索引
using filesort 采用文件扫描对结果进行计算排序,效率低下 解决: order by 的列要出现在select字段中。

void default_val(void) { uint16_t *addp; uint16_t temp, i; addp = (uint16_t *)(&(mainsConfigureStd[2])); Spi_write_uint16_t(addp, MAINS_CONFIGURE_ADD, sizeof(mainsConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(stateDelayConfigureStd[2])); Spi_write_uint16_t(addp, STATE_DELAY_CONFIGURE_ADD, sizeof(stateDelayConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(genConfigureStd[2])); Spi_write_uint16_t(addp, GEN_CONFIGURE_ADD, sizeof(genConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(loadConfigureStd[2])); Spi_write_uint16_t(addp, LOAD_CONFIGURE_ADD, sizeof(loadConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(atsConfigureStd[2])); Spi_write_uint16_t(addp, ATS_CONFIGURE_ADD, sizeof(atsConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(engineConfigureStd[2])); Spi_write_uint16_t(addp, ENGINE_CONFIGURE_ADD, sizeof(engineConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(moduleConfigureStd[2])); Spi_write_uint16_t(addp, MODEL_CONFIGURE_ADD, sizeof(moduleConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); Get_Mac(); addp = (uint16_t *)(&(moduleConfigure.mac[0])); Spi_write_uint16_t(addp, MODEL_CONFIGURE_ADD + offsetof(moduleConfigureStruct, mac[0]), 6); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(maintainConfigureStd[2])); Spi_write_uint16_t(addp, MAINTAIN_CONFIGURE_ADD, sizeof(maintainConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(sensorConfigureStd[2])); Spi_write_uint16_t(addp, SENSOR_CONFIGURE_ADD, sizeof(sensorConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(inputConfigureStd[2])); Spi_write_uint16_t(addp, INPUT_CONFIGURE_ADD, sizeof(inputConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(outputConfigureStd[2])); Spi_write_uint16_t(addp, OUTPUT_CONFIGURE_ADD, sizeof(outputConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(selectConfigureStd[2])); Spi_write_uint16_t(addp, ALT_CONFIG_CONFIGURE_ADD1, sizeof(selectConfigStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(selectConfigureStd[2])); Spi_write_uint16_t(addp, ALT_CONFIG_CONFIGURE_ADD2, sizeof(selectConfigStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(selectConfigureStd[2])); Spi_write_uint16_t(addp, ALT_CONFIG_CONFIGURE_ADD3, sizeof(selectConfigStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(syncConfigureStd[2])); Spi_write_uint16_t(addp, SYNC_CONFIGURE_ADD, sizeof(syncConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(expOutputConfigureStd[2])); Spi_write_uint16_t(addp, EXP_OUTPUT_CONFIGURE_ADD, sizeof(expOutputConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); //2023.4.27 addp = (uint16_t *)(&(customDataConfigureStd[0])); Spi_write_uint16_t(addp, CUSTOM_CONFIGURE_ADD, 600); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(expInputConfigureStd[2])); Spi_write_uint16_t(addp, EXP_INPUT_CONFIGURE_ADD, sizeof(expInputConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(expAinConfigureStd[2])); Spi_write_uint16_t(addp, EXP_AIN_CONFIGURE_ADD, sizeof(expAinConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(expAin8ConfigureStd[2])); Spi_write_uint16_t(addp, EXP_AIN8_CONFIGURE_ADD, sizeof(expAin8ConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(GWConfigureStd)); Spi_write_uint16_t(addp, GW_CONFIGURE_ADD, sizeof(GWConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); HAL_IWDG_Refresh(&hiwdg); /**************************读eepom*******************************/ HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(mainsConfigure)); Spi_read_uint16_t(addp, MAINS_CONFIGURE_ADD, sizeof(mainsConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(stateDelayConfigure)); Spi_read_uint16_t(addp, STATE_DELAY_CONFIGURE_ADD, sizeof(stateDelayConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(genConfigure)); Spi_read_uint16_t(addp, GEN_CONFIGURE_ADD, sizeof(genConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(loadConfigure)); Spi_read_uint16_t(addp, LOAD_CONFIGURE_ADD, sizeof(loadConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(atsConfigure)); Spi_read_uint16_t(addp, ATS_CONFIGURE_ADD, sizeof(atsConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(engineConfigure)); Spi_read_uint16_t(addp, ENGINE_CONFIGURE_ADD, sizeof(engineConfigure) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(moduleConfigure)); Spi_read_uint16_t(addp, MODEL_CONFIGURE_ADD, sizeof(moduleConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(maintainConfigure)); Spi_read_uint16_t(addp, MAINTAIN_CONFIGURE_ADD, sizeof(maintainConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(sensorConfigure)); Spi_read_uint16_t(addp, SENSOR_CONFIGURE_ADD, sizeof(sensorConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(inputConfigure)); Spi_read_uint16_t(addp, INPUT_CONFIGURE_ADD, sizeof(inputConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(outputConfigure)); Spi_read_uint16_t(addp, OUTPUT_CONFIGURE_ADD, sizeof(outputConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(selectConfig1)); Spi_read_uint16_t(addp, ALT_CONFIG_CONFIGURE_ADD1, sizeof(selectConfigStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(selectConfig2)); Spi_read_uint16_t(addp, ALT_CONFIG_CONFIGURE_ADD2, sizeof(selectConfigStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(selectConfig3)); Spi_read_uint16_t(addp, ALT_CONFIG_CONFIGURE_ADD3, sizeof(selectConfigStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(syncConfigure)); Spi_read_uint16_t(addp, SYNC_CONFIGURE_ADD, sizeof(syncConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(expOutputConfigure)); Spi_read_uint16_t(addp, EXP_OUTPUT_CONFIGURE_ADD, sizeof(expOutputConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); //2023.4.27 addp = (uint16_t *)(&(customDataConfigure[0])); Spi_read_uint16_t(addp, CUSTOM_CONFIGURE_ADD, 600); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(expInputConfigure)); Spi_read_uint16_t(addp, EXP_INPUT_CONFIGURE_ADD, sizeof(expInputConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(expAinConfigure)); Spi_read_uint16_t(addp, EXP_AIN_CONFIGURE_ADD, sizeof(expAinConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(expAin8Configure)); Spi_read_uint16_t(addp, EXP_AIN8_CONFIGURE_ADD, sizeof(expAin8ConfigureStruct) / 2); HAL_Delay(2); //osDelay(5); addp = (uint16_t *)(&(GWConfigure)); Spi_read_uint16_t(addp, GW_CONFIGURE_ADD, sizeof(GWConfigureStruct) / 2); temp = 0x4240; for (i = 0; i < 10; i++) { Spi_write_uint16_t(&temp, MASK_SPN_ADD + 4 * i, 1); HAL_Delay(2); //osDelay(5); } temp = 0x0F; for (i = 0; i < 10; i++) { Spi_write_uint16_t(&temp, MASK_SPN_ADD + 4 * i + 2, 1); HAL_Delay(2); //osDelay(5); } for (i = 0; i < 10; i++) { maskSPN[i] = 1000000ul; } spnCmVersion = 0; Spi_write_uint16_t(&spnCmVersion, MASK_SPN_ADD + 40, 1); HAL_Delay(2); //osDelay(5); HAL_IWDG_Refresh(&hiwdg); temp = sizeof(UNICODE) / 2; Spi_write_uint16_t(&temp, PC_USED_ADD, 1); HAL_Delay(2); //osDelay(5); temp = 0; Spi_write_uint16_t(&temp, PC_USED_ADD + 2, 1); HAL_Delay(2); //osDelay(5); temp = 0; Spi_write_uint16_t(&temp, PC_USED_ADD + 4, 1); HAL_Delay(2); //osDelay(5); temp = 0; Spi_write_uint16_t(&temp, PC_USED_ADD + 6, 1); HAL_Delay(2); //osDelay(5); Spi_write_uint16_t(&temp, TEST_GEN_ADD, 1); HAL_Delay(2); //osDelay(5); Spi_write_uint16_t(&temp, TEST_GEN_ADD + 2, 1); HAL_Delay(2); //osDelay(5); Spi_write_uint16_t(&temp, TEST_GEN_ADD + 4, 1); HAL_Delay(2); //osDelay(5); DATA_REGISTER.runHourResultA = 0; DATA_REGISTER.runMinuteResultA = 0; DATA_REGISTER.runSecondResultA = 0; DATA_REGISTER.numStartResultA = 0; DATA_REGISTER.runGenKwhA = 0; DATA_REGISTER.runHourResultB = 0; DATA_REGISTER.runMinuteResultB = 0; DATA_REGISTER.runSecondResultB = 0; DATA_REGISTER.numStartResultB = 0; DATA_REGISTER.runGenKwhB = 0; kwhPTempA = 0; kwhPTempB = 0; Spi_write_uint16_t((uint16_t *)(&DATA_REGISTER.runHourResultA), TOTAL_RUN_HOUR_ADD_USER, 12); HAL_Delay(2); //osDelay(5); }描述功能
最新发布
09-11
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值