概述
首先我们来看智能对话机器人体系结构的构成,从与机器交互的完整流程角度来给大家做一个系统性的概述。
当人通过声音信号把自己表达的内容以声音的方式来传递给机器的时候,机器人接收声音的过程涉及到了语音识别技术。
这个语音识别在这个里面其实是一个综合体,它既包括语音采集,也包括把声音信号转成文字信号。
其次,当我们把声音信号转换成文本信号后,要做的一件事情就是语义理解,因为你要让机器理解你,那么首先要让机器知道你说的是什么内容。机器在理解你说内容的过程中,依赖于中文分词、词性标注、实体意图识别、语义分析。那这部分内容就涉及到了语义理解技术。
在机器理解人所说的内容后,会把对应的内容交给对话管理平台来进行处理。那么对话管理平台涉及到的内容是什么呢?包括对话状态的跟踪同时也包括对话的策略模型。
对话状态跟踪负责两件事情,第一是负责对对话状态进行跟踪,第二是对“对话活动”进行决策。当完成了对话状态跟踪和对话活动的决策后,会生成对应的答案。那么这种答案往往很多时候有两种情况,一种情况是多答案的情况,另外一个是对多处理模式的选择。
当我在表达一句话的时候,如果机器在备选答案里面找到了多个回答,即出现了第一种情况,多答案情况。这个时候就会涉及到决策模型,这个决策模型就是智能对话的策略模块。这个时候策略模块包括通用决策模型和领域决策模型。
通用决策模型可以理解为适合所有领域的决策分析模块,领域模型对应特定领域,比如教育、医疗,房产。这一部分是对话管理的组件。
以上是可以在备选答案里面找到答案的情况,那么当机器人在备选答案里找不到答案时,会如何处理呢?
这里涉及到两个问题,第一个是优先级,第二个是补位。
优先级指的是当机器对用户话术进行语义理解之后,如果找到答案的过程存在多种方案,应考虑优先选取的策略是什么。另外一个是当在预置的语料库中找不到答案时,可选的补位的方式是什么。在这里,通常意义上来讲会选择知识图谱,搜索引擎