BUAA_数据结构_4TH_银行排队模拟(生产者-消费者模拟)

BUAA_数据结构_4TH_银行排队模拟(生产者-消费者模拟)

题目描述:

一个系统模仿另一个系统行为的技术称为模拟,如飞行模拟器。模拟可以用来进行方案论证、人员培训和改进服务。计算机技术常用于模拟系统中。
生产者-消费者(Server-Custom)是常见的应用模式,见于银行、食堂、打印机、医院、超等提供服务和使用服务的应用中。这类应用的主要问题是消费者如果等待(排队)时间过长,会引发用户抱怨,影响服务质量;如果提供服务者(服务窗口)过多,将提高运管商成本。(经济学中排队论)
假设某银行网点有五个服务窗口,分别为三个对私、一个对公和一个外币窗口。银行服务的原则是先来先服务。通常对私业务人很多,其它窗口人则较少,可临时改为对私服务。假设当对私窗口等待服务的客户(按实际服务窗口)平均排队人数超过(大于或等于)7人时,等待客户将可能有抱怨,影响服务质量,此时银行可临时将其它窗口中一个或两个改为对私服务,当客户少于7人时,将立即恢复原有业务。设计一个程序用来模拟银行服务。

说明:

  1. 增加服务窗口将会增加成本或影响其它业务,因此,以成本增加或影响最小为原则来增加服务窗口,即如果增加一个窗口就能使得按窗口平均等待服务人数小于7人,则只增加一个窗口。一旦按窗口平均等待服务人数小于7人,就减少一个所增加的窗口。
  2. 为了简化问题,假设新到客户是在每个服务周期开始时到达。
  3. 当等待服务人数发生变化时(新客户到达或有客户已接受服务),则及时计算按实际服务窗口平均等待服务人数,并按相应策略调整服务窗口数(增加或减少额外的服务窗口,但对私窗口不能减少)。注意:只在获取新客户(不管到达新客户数是否为0)时或已有客户去接受服务时,才按策略调整服务窗口数。进一步讲,增加服务窗口只在有客户到达的周期内进行(也就是说增加窗口是基于客户的感受,银行对增加窗口是不情愿的,因为要增加成本,一旦不再有新客户来,银行是不会再增加服务窗口的);一旦有客户去接受服务(即等待客户减少),银行将根据策略及时减少服务窗口,因此,在每个周期内,有客户去接受服务后要马上判断是否减少服务窗口(因为能减少成本,银行是积极的)

本问题中假设对公和对外币服务窗口在改为对私服务时及服务期间没有相应因公或外币服务新客户到达(即正好空闲),同时要求以增加成本或影响最小为前提,来尽最大可能减少对私服务客户等待时间。

输入形式

首先输入一个整数表示时间周期数,然后再依次输入每个时间周期中因私业务的客户数。注:一个时间周期指的是银行处理一笔业务的平均处理时间,可以是一分钟、三分钟或其它。例如:
6
2 5 13 11 15 9
说明:表明在6个时间周期内,第1个周期来了2个(序号分别为1,2),第2个来了5人(序号分别为3,4,5,6,7),以此类推。

输出形式

每个客户等待服务的时间周期数。输出形式如下:
用户序号 : 等待周期数
说明:客户序号与等待周期数之间用符号:分隔,冒号(:)两边各有一个空格,等待周期数后直接为回车。

参考代码

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<ctype.h>
#define maxN 100
struct customer{
    int id;
    int wait_time;
};
typedef struct customer customer;
int windows_num=3;
int front,rear,count;
customer queue[maxN];

void initQueue();
int is_full();
int is_empty();
void enter_queue(customer x);
customer outer_queue();
int get_queue_num();

void update_wait_time();
void arrive_customer();
int service();

int main()
{
    initQueue();
    int n;
    scanf("%d",&n);
    for(int clock=1;;clock++){
        update_wait_time();
        if(clock<=n){
            arrive_customer();
        }
        if(service()==0 && clock > n){
            break;
        }
    }
    return 0;
}

void initQueue()
{
    front=0;
    rear=maxN-1;
    count=0;
}

int is_full()
{
    return count==maxN;
}

int is_empty()
{
    return count==0;
}

void enter_queue(customer x)
{
    if(is_full()){
        printf("Full!!!");
    }
    else{
        rear=(rear+1)%maxN;
        queue[rear]=x;
        count++;
    }
}

customer outer_queue()
{
    customer res;
    if(is_empty()){
        printf("EMPTY!!!");
    }
    else{
        res=queue[front];
        count--;
        front=(front+1)%maxN;
        return res;
    }
}

int get_queue_num()
{
    return count;
}

void update_wait_time()
{
    for(int i=front;i<=rear;i++){
        queue[i].wait_time++;
    }
}

void arrive_customer()
{
    static count_compute=1;
    customer temp;
    int n;
    scanf("%d",&n);
    for(int i=0;i<n;i++){
        temp.id=count_compute++;
        temp.wait_time=0;
        enter_queue(temp);
    }
    while((get_queue_num()/windows_num)>=7&&windows_num<5){
        windows_num++;
    }
}

int service()
{
    customer c;
    for(int i=0;i<windows_num;i++){
        if(is_empty()) return 0;
        else{
            c=outer_queue();
            printf("%d : %d\n",c.id,c.wait_time);
        }
    }
    if((get_queue_num()/windows_num)<7&&windows_num>3){
        windows_num--;
    }
    return 1;
}

在这里插入图片描述
说明:客户序号与等待周期数之间用符号:分隔,冒号(:)两边各有一个空格,等待周期数后直接为回车。
第一次提交的时候忘记了冒号两侧的空格… 结果如上图所示
在这里插入图片描述

有问题或bug 欢迎私戳/评论

假设某银行有n个窗口对外接待客户,从早晨银行9点开门起到5点关门,不断有客户进入银行,由于每个窗口在某个时刻只能接待一个客户。因此在客户人数众多时需要在每个窗口前顺次排队,对于刚进银行的客户。如果某个窗口的业务员正空闲,则可上前输业务。反之,若个窗口均有客户所占,他便会排在为数最少的队伍后面。编制一个程序模拟银行的这种业务活动并计算一天中客户在银行的平均逗留时间。 首先从题目分析:N个窗口排队,首先就要建立N个队列来存储排队的用户信息 ,然后算出那个队列最短就用户就到那个队伍排队,同时通过随机生成他办理业务的时间和到来的时间,通过计算用户的到来时间和离开时间就可以计算出某个用户在银行的逗留时间 ;话不多说直接上代码。 下面是主函数,由用户输入银行上下班时间,计算营业多长时间Total_time,如何当前时间小于关门的时间,就一直进入customer_into();函数,用户不断的进来 #define FALSE 0 #define TRUE 1 #define QUEUE_SUM 4 //窗口的数量 int rand_business_time=0, rand_wait_time=0;//定义办理时间,等待时间变量 int Total_time=0,now_tim=0;//总时间,当前时间 int go_time[4] = {0,0,0,0};//定义数组存储每个窗口最后一位办理完业务的时间 int sum_nan[4] = {0,0,0,0};//定义数组存储每个窗口排队的人数 int Sign=TRUE; //是否关门标志位 float Sum_Wait_Time=0.0; //等待的总时间 float Sun_Nan=0.0; //总人数 int open_time;//开门时间 int off_time; //关门时间 int main() { Prompted(); printf("输入银行的24小时制营业时间:如营业时间为9:00--17:00,则应输入:9,17\n"); scanf("%d,%d", &open;_time,&off;_time); Total_time = (off_time - open_time) * 60;//计算银行总营业多少分钟 for (int i = 0; i now_time) { customer_into(); //客户进入函数 } printf("银行关门时间到不再接收客人\n\n"); for (int i = 0; i < QUEUE_SUM; i++) { DisposeQueue(&queue;[i],i);//输入在银行关门前还没有办理完业务的客户信息 } printf("平均时间为%.2f分钟",Sum_Wait_Time/Sun_Nan); /*通过各个客户的总等待时间总和/总人数算出逗留平均时间*/ _getch(); return 0; }
一、 课程设计目的 在多道程序环境下,进程同步问题十分重要,通过解决“生产者-消费者”问题,可以帮助我们更好的理解进程同步的概念及实现方法。掌握线程创建和终止的方法,加深对线程和进程概念的理解,会用同步与互斥方法实现线程之间的进行操作。 在学习操作系统课程的基础上,通过实践加深对进程同步的认识,同时,可以提高运用操作系统知识解决实际问题的能力;锻炼实际的编程能力、创新能力及团队组织、协作开发软件的能力;还能提高调查研究、查阅技术文献、资料以及编写软件设计文档的能力。 二、 课程设计内容 模拟仿真“生产者-消费者”问题的解决过程及方法。 三、 系统分析与设计 1、 系统分析 在OS中引入进程后,虽然提高了资源的利用率和系统的吞吐量,但由于进程的异步性,也会给系统造成混乱,尤其是在他们争用临界资源时。为了对多个相关进程在执行次序上进行协调,以使并发执行的诸程序之间能有效地共享资源和相互合作,使程序的执行具有可再现性,所以引入了进程同步的概念。信号量机制是一种卓有成效的进程同步工具。 在生产者---消费者问题中应注意(信号量名称以多个生产者和多个消费者中的为例):首先,在每个程序中用于互斥的wait(mutex)和signal(mutex)必须成对出现;其次,对资源信号量empty和full的wait和signal操作,同样需要成对地出现,但它们分别处于不同的程序中。生产者消费者进程共享一个大小固定的缓冲区。其中,一个或多个生产者生产数据,并将生产的数据存入缓冲区,并有一个或多个消费者从缓冲区中取数据。 2、 系统设计: 系统的设计必须要体现进程之间的同步关系,所以本系统采用2个生产者、2个消费者 和20个缓冲区的框架体系设计。为了更能体现该系统进程之间的同步关系,系统的生产者消费者的速度应该可控,以更好更明显的表现出结果。 为了使本系统以更加简单、直观的形式把“消费者-生产者”问题表现出来,我选择了使 用可视化界面编程。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值